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Abstract: This study aimed to identify when and how eye movements change across the human
lifespan to benchmark developmental biomarkers. The sample size comprised 45,696 participants,
ranging in age from 6 to 80 years old (M = 30.39; SD = 17.46). Participants completed six eye
movement tests: Circular Smooth Pursuit, Horizontal Smooth Pursuit, Vertical Smooth Pursuit,
Horizontal Saccades, Vertical Saccades, and Fixation Stability. These tests examined all four major
eye movements (fixations, saccades, pursuits, and vergence) using 89 eye-tracking algorithms. A
semi-supervised, self-training, machine learning classifier was used to group the data into age ranges.
This classifier resulted in 12 age groups: 6–7, 8–11, 12–14, 15–25, 26–31, 32–38, 39–45, 46–53, 54–60,
61–68, 69–76, and 77–80 years. To provide a descriptive indication of the strength of the self-training
classifier, a series of multiple analyses of variance (MANOVA) were conducted on the multivariate
effect of the age groups by test set. Each MANOVA revealed a significant multivariate effect on age
groups (p < 0.001). Developmental changes in eye movements across age categories were identified.
Specifically, similarities were observed between very young and elderly individuals. Middle-aged
individuals (30s) generally showed the best eye movement metrics. Clinicians and researchers may
use the findings from this study to inform decision-making on patients’ health and wellness and
guide effective research methodologies.

Keywords: eye movements; machine learning; eye tracking; lifespan development

1. Introduction

Our eyes are often said to be windows to our souls. Eye movements are highly
sensitive representations of brain function and, therefore, of an individual’s health and
wellness [1]. Eye movements are measured noninvasively using eye-tracking technology
that provides objective ways to understand neural pathways.

Some eye movements have clinical significance, such as tremors related to early-stage
Parkinson’s disease [2]. Other eye movements provide information regarding the muscle
coordination of the eyes that allows individuals to see the world in three dimensions [3].
Other eye movements may reflect expertise in a skill, such as that of a sport or diagnostic
procedure (e.g., an experienced clinician examining a radiological chest X-ray) [4].

Although eye-tracking hardware is becoming ubiquitous, and eye movement research
is plentiful, limitations in setting benchmarks exist. Perhaps the most critical limitation is
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understanding how eye movements change across the lifespan. To date, researchers and
clinicians struggle with answering fundamental questions, such as: What should be consid-
ered “functional” eye movement results across the lifespan? When do movements of the
eye significantly change? How do they change? Which eye movements change? Answers
to these questions will provide critical biomarkers to aid in understanding a person’s health
and wellness. Furthermore, such markers can assist in rapid triage, informing treatment,
and aiding in monitoring recovery.

As of the writing of this paper, twenty-one studies were found that examined eye
movements as we age. In examining these studies, three main limitations were identified.

The first limitation is the small sample sizes. Normative data studies should be
obtained from very large samples, typically many thousands of diverse participants [5].
Of the twenty-one studies found, sample sizes range from groups in the single digits (e.g.,
Scherf et al., n = 9 for 10–13-year-olds, n = 13 for 14–17-year-olds) [6] to the largest sample
size of 2993 participants in a group of 5–65-year-olds (e.g., Murray et al., 2019) [7].

A second limitation includes the type of eye movements measured in these studies.
The four major eye movements are fixations, saccades, pursuits, and vergence. Fixations
are stopping points that hold an image on the fovea for detailed examination [1]. Saccades
are quick ballistic eye movements that reorient the eye to places across the field of view.
Smooth pursuits eye movements follow an object through space, such as the motion of
tracking a ball. Vergence eye movements are where the eyes move in oppositive directions
so that images of a single object are placed or held simultaneously as the object moves
closer or further away [1].

Most studies focus solely on saccadic eye movements. There are a few exceptions,
such as Kullman et al., who measured saccades and pursuits [8]; Mokler and Fischer, who
measured saccades and fixations [9]; and Gould et al., who measured fixation alone [10].
The limitation in not measuring all of the major eye movements leads to an incomplete
picture of the visual and cognitive aspects that eye movements pose to health and wellness.

The final, third major limitation of normative data studies to date is, indeed, the lack
of widespread examination of eye movements across the entire lifespan. Studies have
shown differences in specific eye movements at certain ages. For example, Fukushima et al.
observed that saccadic reaction time plateaued by 12 years of age [11]. Others, like Kullman
et al., have shown no age differences when comparing 18–21-year-olds (late adolescents)
and 21–45-year-olds [12]. Lenzenweger and O’Driscoll stated that they “limited the age to
one group of 18–45 years to avoid potential age-related artifacts” [13].

Murray et al. attempted to identify distinct groups by age using an unsupervised
machine learning method [7]. With a sample size of 2993, the model-based clustering used
expectation maximization (EM) algorithm analysis. The results identified five distinct age
group clusters: 5–8, 9–16, 17–28, 29–52, and 53–62.

Although an important step in data-driven age group determination of eye move-
ments, Murray et al. still present two main limitations [7]. First, there was a relatively small
sample size [7]. Second, there was a limited age range, especially regarding a lack of elderly
adults [7]. Therefore, per Campbell’s assertion that “normative data studies are typically
obtained from very large, randomly selected representative samples of the whole popula-
tion” [5], the purpose of this study is multifaceted. First, this study aims to allow for eye
movement data to drive the identification of age groups using a semi-supervised machine
learning methodology. The second purpose is to include a large volume of age-based eye
movement data from tens of thousands of participants (n = 46,655) across the entire human
lifespan to increase the generalizability of the results. The third purpose is to include the
four major eye movements (fixations, saccades, pursuits, and vergence). Therefore, this
study aims to identify age-based developmental biomarkers for eye movements that can be
used as milestones for clinicians and researchers to inform decision-making on patients’
health and wellness and to guide future research methodologies.
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2. Materials and Methods
2.1. Participants

Participants were recruited from 804 sites containing RightEye Vision Systems. The
sites were optometry practices throughout the United States where participants had come
for a clinical visit or annual exam. Selection criteria included participants who had com-
pleted all six eye movement tests, which include Circular Smooth Pursuit (CSP), Horizontal
Smooth Pursuit (HSP), Vertical Smooth Pursuit (VSP), Horizontal Saccades (HS), Vertical
Saccades (VS), and Fixation Stability (FS).

Participants were excluded from this study if they had eyelash impediments, had
consumed drugs or alcohol within 24 h of testing, tested positive for strabismus, or failed
to pass all 9 points of calibration.

This sample included 45,696 participants ranging in age from 6 to 80 years old. The
mean age was 30.39 (SD = 17.46) years.

Gender was reported in 51.45% (n = 23,557) of the participants. Of the data that
included gender, 11,871 participants were male (50.39%) and 11,686 participants were
female (49.61%). Of the total 45,696 participants, 42.38% (n = 19,366) reported their race
and ethnicity, with the majority identifying as White (n = 13,465, 69.53%). The next largest
ethnic group was Asian at 5.48% (n = 1063), then Latin American (n = 982, 5.07%), then
Black (n = 796, 4.11%).

Handedness was reported by 51.45% (n = 23,109) of the participants, most of whom
were right-handed (n = 20,467, 88.57%). Of the total, 2010 (8.70%) were left-handed and 632
(2.73%) reported being ambidextrous.

This study was conducted in accordance with the tenets of the Declaration of Helsinki.
The study protocols were approved by the Institutional Review Board of East Carolina
University (IRB UMCIRB 13-002660). All data used for the analysis are anonymized.

2.2. Testers

Board-certified (the American Board of Optometry) optometrists conducted the testing.
The clinician was trained in using the RightEye vision system and became a certified
RightEye provider.

2.3. Apparatus

Stimuli were presented using the RightEye tests on a Tobii I15 vision 15 monitor fitted
with a Tobii 90 Hz remote eye tracker and a Logitech (model Y-R0017) wireless keyboard
and mouse. The accuracy of the Tobii eye tracker was 0.4◦ within the desired headbox of
32 cm × 21 cm at 55 to 60 cm from the screen.

2.4. Testing Procedure

Testers were required to complete and pass the RightEye Basic Training Course de-
signed to teach them the appropriate test setup and data collection procedures. This setup
included seating participants in a stationary (nonwheeled) chair that could not be adjusted
in height. Participants sat in front of a desk in a quiet, private room. Participants’ heads
were unconstrained.

For standardization of testing, participants were asked to sit in front of the eye-tracking
system at an exact measured distance of 56 cm (ideal positioning within the headbox range
of the eye tracker). This was validated in real time using the RightEye head box guidance
system (Figure 1).

Participants then calibrated using a standard 9-point calibration task. If all 9 calibration
points were passed, participants were tested on the oculomotor tasks.
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Figure 1. Head box guidance system showing real-time head box adjustments and ideal participant 
location to RightEye vision system. Measurement in centimeters (cm). 
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2.5. Oculomotor Tasks

Calibration Task: This consisted of nine points of gaze, each the size of one degree, and
presented one at a time for 2 s. The visual targets appeared in random locations across
the screen. The calibration task took 18 s to complete. At the task’s end, the participant
would have effectively viewed the 9 sections of the screen. The purpose of the calibration
task was to enable the eye tracker to turn information about the location of the centers
of the pupil and corneal reflection (pixel coordinates) into gaze locations on the screen.
This information elicited pupil measurements (e.g., pupil size) and was used to track gaze
throughout subsequent tests.
Pursuit Tasks: This included Circular Smooth Pursuit (CSP), Horizontal Smooth Pursuit
(HSP), and Vertical Smooth Pursuit (VSP). Participants were verbally asked to “follow
the dot on the screen as accurately as possible with your eyes”. The dot was 0.2 degrees
in diameter and moved at a speed of 25.13 degrees of visual angle per second. The tests
were taken with a black background with white dots and lasted 20 s. For the CSP test,
the diameter of the circle’s movement was 20 degrees. For the HSP test, the dot moved
15 degrees left and 15 degrees right of the central point (totaling 30 degrees horizontally).
For the VSP test, the dot moved 11 degrees up and 11 degrees down from the central point
(totaling 22 degrees).
Saccade Tasks: This included the horizontal self-paced saccades test (HS) and vertical
self-paced saccades test (VS). Participants were asked to look at a countdown from 3 to 1 in
the center of the screen before moving their eyes back and forth between 2 dots. Their goal
was to “target each dot” on the left and right for the HS test (up and down for the VS test)
on the screen as quickly and accurately as possible. The test lasted 10 s.
Fixation Task: This task included the Fixation Stability (FS) test. Participants were required
to view three targets, presented one at a time, for seven seconds each, with a break of three
seconds between targets. Before each target was presented, identical verbal instructions
were given to every participant: “Move your eyes to the center of the target. Keep your
eyes as still as possible until the target disappears”. The tester then asked, “Are you looking
at the center of the target”? Once the participant confirmed with a verbal “Yes”, the tester
pressed the spacebar, and the 7 second time began. Targets included a 1◦ cross, a 1◦ filled
circle, and a small 4-point diamond (3◦ point-to-point separation) using dimensions as
in the Humphrey Field Analyzer (Carl Zeiss Meditec, Dublin, CA, USA) and specified in
Bellmann et al. [14].

2.6. Eye-Tracking Algorithms

Eighty-nine eye-tracking algorithms were derived from the seven different oculomotor
tasks. CSP contributed 17 variables, HSP contributed 18 variables, VSP contributed 13
variables, HS contributed 14 variables, VS contributed 12 variables, FS contributed 13
variables, and calibration contributed 2 pupil variables. Tables A1–A7 in Appendix A
show the variables calculated, including the eye movement classification category being
measured (vergence, saccade, fixation, pursuit, blink, or pupil), the eye being measured
(left, right, or both eyes), and the name and definition of the algorithm for each of the
oculomotor tasks.
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In summary, the tasks included all major eye movements (fixations, saccades, pursuits,
and vergence) and two additional eye measures in pupil and blink algorithms. Figure 2
shows the type of eye movement and the number of associated algorithms.
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Figure 2. Frequency of eye movement, blink, and pupil algorithms.

2.7. Data Analysis

Analysis was conducted in Jupyter (Version 7.0.6) using Python (Version 3.5) and
Scikit Learn (Version 0.21). A semi-supervised, self-training, machine learning classifier
was used to group data into age ranges. Understanding the data groups is enhanced by
using these algorithms because of their inherent ability to analyze complex, large datasets
and derive meaningful patterns in the data [15].

Random forest classifier (RFC) was used as the base classifier. RFCs are commonly
used ensemble machine learning (ML) algorithms that use multiple decision trees to reach
a single result [16]. Each iteration of the decision tree is developed using a random subset
of the eye-tracking variables [17].

The base classifier in a self-training classifiers (STCs) provides uncertainty estimates
for predictions. The STC algorithm was proposed by Yarowsky (1995) [18]. The STC allows
for supervised classifiers to act semi-supervised to learn from unlabeled data. It is an
iterative algorithm that predicts pseudo-labels for the unlabeled data and adds them to the
training set. The algorithm continues iterating until a stop condition is reached. The stop
conditions included a maximum depth of 10, using maximum features of the square root,
with maximum iterations of 200 and a threshold of 95%.

Prior to running the RFC, twenty-three ages (measured in years) were removed
(unlabeled), and the non-labeled dataset was formed. The STC acts as a wrapper on
the base classifier, enabling it to learn from partially labeled data, making the machine
learning algorithm semi-supervised [15]. To determine the transferability of the data,
80% was used for training and 20% for testing. Accuracy, defined as the model’s ability
to correctly classify the age of each participant in the unlabeled test data, was used to
evaluate it.

Upon completion of the STC, a series of MANOVAs were conducted on the multi-
variate effect of the age groups by test set (e.g., CSP, HSP, VSP, HS, VS, and FS variables).
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MANOVAs were conducted to provide a descriptive indication of the strength of the STC.
The probability was set to p < 0.05.

3. Results

The sample size was 45,696, and participants ranged from 6 to 80 years old (Figure 3).
The mean age (SD) was 30.39 (17.46) years. As shown in Figure 3, the distribution is
skewed right positively; therefore, data are also reported as median and interquartile
ranges (IQRs) [19]. The median (IQR) was 26.00 (16.00–43.00) years.
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Figure 3. Age distribution histogram.

The STC resulted in 12 age groups: 6–7, 8–11,12–14, 15–25, 26–31, 32–38, 39–45, 46–53,
54–60, 61–68, 69–76, and 77–80 years. Table 1 shows the descriptive, age, and gender
statistics of each age group defined by the STC. The interquartile range (IQR) between the
25th and 75th percentiles and the middlemost number (median) reported as age data are
positively skewed [19].

Table 1. Age data for each age group defined by the model.

Participants Age Range (years) Median Age IQR Lower IQR Upper Male % Female %

1 414 6 to 7 7 7 7 20.77 79.23
2 4299 8 to 11 10 9 11 25.05 74.95
3 4446 12 to 14 13 12 14 28.61 71.39
4 13,561 15 to 25 19 17 22 30.57 69.43
5 4716 26 to 31 28 27 30 27.14 72.86
6 3213 32 to 38 34 33 35 22.13 77.87
7 5225 39 to 45 41 39 43 21.88 78.12
8 3877 46 to 53 49 47 51 22.18 77.82
9 2522 54 to 60 57 55 59 21.37 78.63

10 2115 61 to 68 64 62 66 21.37 78.63
11 1077 69 to 76 72 70 74 23.86 76.14
12 231 77 to 80 78 77 79 21.21 78.79
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Skewness: The skewness range was between −10 and +10 for all ET variables. Figure 4
shows two representative samples of the skewness of eye movement variables.
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The positive skew of VS Band 2 Under is depicted in Figure 4a. As such, more partici-
pants had lower values for this variable. In other words, more participants were performing
below the average. As the longer right tail indicates, fewer participants performed above
the average. Figure 4b reveals an opposite trend. Depicted in 4b, the Vertical Synchroniza-
tion CSP, a negative skew was seen. In other words, more participants were performing
above the average. As the longer left tail indicated, fewer participants performed below
average. Due to the skewness of the data, the median and IQR for each eye tracking variable
by age group within each oculomotor task were used to represent the measures of central
tendency and variability (see Appendix B, Tables A8–A14).

The STC correctly classified the age group of participants 94.67% of the time. To
provide a descriptive indication of the strength of the STC, a series of MANOVAs were
conducted on the multivariate effect of the age groups by test set (e.g., CSP, HSP, VSP, HS,
VS, and FS variables). Each MANOVA revealed a significant multivariate effect on age
groups (See Table 2), thus indicating reasonable support for the STC model. This significant
multivariate effect on age groups (p < 0.001) upholds the robustness of our model.

Table 2. Multiple analysis of variance outcomes for the self-training classifier model.

Test Wilks’ Lambda F p-Value

Circular Smooth Pursuit 0.863 36.206 <0.001
Horizontal Smooth Pursuit 0.857 35.966 <0.001

Vertical Smooth Pursuit 0.809 74.264 <0.001
Horizontal Saccades 0.796 68.545 <0.001

Vertical Saccades 0.791 82.525 <0.001
Fixation Stability 0.844 54.863 <0.001

4. Discussion

This study aimed to identify when and how eye movements change across the human
lifespan to benchmark developmental biomarkers. The semi-supervised machine learning
model stratified individuals into 12 age groups based on eye movement data with high
accuracy (94.67%). Follow-up MANOVAs were used to indicate the strength of each age
group; the results indicated a high level of significance (p < 0.001).

These findings reveal age-based developmental biomarkers associated with eye move-
ments across many participants (n = 46,655) and a vast age range (6 to 80), adding to the
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current body of knowledge by enhancing the generalizability of age-based, eye-tracking
biomarkers [7,8,11,12].

An interesting observation regarding the age groups identified through the eye move-
ment variables is that young and elderly individuals have smaller age ranges when com-
pared to other stages of life. For example, Group 1 includes 6-to-7-year-olds, a two-year age
span. Group 2 includes 8-, 9-, 10- and 11-year-olds, a 4-year age span. Group 12 includes
77-, 78-, 79-, and 80-year-olds, again a 4-year age span. In the early stages of development
and later stages of decline, the differences in eye movements related to age change more
rapidly [1]. In early adulthood, from 15 to 25, there is little change, according to our results.
Then, in middle age, change seems to occur about every five or six years, as seen by the
age groups 26 to 31 (Group 5), 32 to 38 (Group 6), and 39 to 45 (Group 7). These results are
consistent with other life span development research, such as that which has found a linear
reduction in processing speed as we age [20] and that our thinking abilities appear to peak
around age 30 on average and then decline subtly with age [21].

This study shows that age affects eye movement behaviors in broad and significant
ways, consistent with the current body of literature. The four major eye movements
(fixations, saccades, pursuits, and vergence) were examined via the different tests (CSP,
HSP, VSP, HS, VS, and FS variables). Follow-up MANOVAs revealed highly significant
differences across all testing protocols.

Interestingly, a pattern is revealed when reviewing individual variables throughout
Tables A8–A14, showing an inverted bell curve in the results. For example, latent smooth
pursuit (Table A8, Figure 5) is higher (worse) among the young (6- and 7-year-olds with
a median of 26.57%). Then, there was a consistent reduction in percentage, showing an
improvement in eye movement behavior until middle adulthood (Group 6: 32–38-year-
olds). This is followed by a consistent increase in latent smooth pursuit percentages from
middle age to elderly (Group 12: 77–80-year-olds) showing similar results to the very young
(Group 1, 6-to-7-year-olds, and Group 2, 8–11-year-olds).
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Figure 5. Example of the inverted U as seen in the latent smooth pursuit percentage demonstrating
eye movement behavior across the lifespan.

This inverted bell curve reveals a change toward improvement in eye movement
behavior until ones 30 s, then a gradual, consistent, and significant decline until 80 years
of age. The decline is at a more gradual rate than the improvement seen in early years.
Furthermore, the decline does not reach the initial, early age levels of high latent smooth
pursuit percentages, indicating poor performance. This trend occurs not only in smooth
pursuit eye movement metrics but also in saccades, fixations, and vergence-related variables
(e.g., Table A12: On Target). Sensitive measures of variance and efficiency also follow
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the same pattern (see Table A12). These findings support other lifespan developmental
research indicating changes early and late in life, with peak abilities stabilizing in early
adulthood [20–22].

Eye movement speed is slowest in Groups 1 and 12, the young and elderly (Table A11,
saccadic amplitude, 188 and 191 degrees, respectively). However, when viewed in conjunc-
tion with saccadic targeting, we see that the elderly are slower and more accurate than the
young (9.18 in Group 1 and 11.05 in Group 12). This is further validated when viewing
the results of the speed–accuracy trade-off (Table A11), whereby there is a reduction in
speed in both Groups 1 and 12 but a higher accuracy even with the speed reduction for
Group 12, indicating a trade-off that reveals slower speed with greater accuracy for the
elderly population (3.60). In contrast, in middle age, people can be both fast and accurate
with their eye movements, as demonstrated by Group 5, 26-to-31-year-olds, whose speed–
accuracy trade-off was almost double that of the young and the elderly (5.67). These results
are consistent with research that shows older adults are slower than younger adults in
completing most tasks [22]. Some reasons for this may include older adults being reluctant
to commit errors and unwilling to adopt a “fast-and-careless” attitude.

These results may be useful in future eye movement studies where people of different
ages participate. Adjustments to the design of research, specifically the methodologies and
related results, should carefully consider the impact of age. Studies may consider grouping
participants by age or only including specific age ranges, should they wish age, not to be a
confounding variable.

This model holds many advantages over models utilized in the past. Its ability to
accurately differentiate by age groups solely based on eye movement data sets it apart. This
differentiation has allowed for a more thorough identification of developmental biomarkers.
The work and findings are predicated on a large sample size, thereby enhancing the
generalizability of the findings.

While this study marks the potential for updating our understanding of age-related
changes in eye movement patterns, certain limitations exist. Specifically, there are limita-
tions in its use of cross-sectional cohorts [23]. Although this study attempts to mitigate
this limitation by having a large sample size, future research should consider longitudinal
tracking to assess possible generational differences that could serve as confounders (e.g.,
technology usage). An examination of the data may further stratify persons into age–gender
cohorts. On a related note, a limitation does, indeed, exist, in that we had more female par-
ticipants than male participants. This introduces the potential for bias predicated on gender,
a limitation future work should aim to address. Finally, charting typical developmental
trajectories in each type of eye movement (fixations, saccades, pursuits, and vergence) may
further stratify groups and, in turn, may more precisely assist clinicians and researchers in
defining eye movements across the human lifespan.

Eye movements, measured using eye trackers, provide quantifiable reflections of
eye movement behavior that may, in turn, be used to group persons based on age. Such
information may be used as a digital biomarker. Digital biomarkers are objective measures
that capture the state of a cell or, in this case, the eye movements of a human being [24].
Digital biomarkers are collected via computing systems such as digital services, wearable
technology, or computer technologies that can explain, influence, or predict health-related
outcomes [25].

Digital biomarkers can play an important role in uncovering a person’s health and
wellness for early disease detection, enabling healthcare providers to administer early
and targeted treatments that may slow, reduce, or even cure disease in patients [26].
As such, it is vital to be able to compare expected (normative) controls with potential
disease states [27,28]. Similarly, the biomarkers identified have implications for clinicians
in practice, as these biomarkers could allow for detecting various disorders that would be
otherwise difficult or delayed without quantifiable metrics. In this regard, these metrics
allow for establishing benchmarks that are fluid with age instead of uniform across the
lifespan. For example, the inverted bell curve illuminated in this work subsequently
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enables professionals to adjust patient expectations, thereby enhancing individualized
care. As it pertains to assistive technology, clinicians can and should consider facets
such as the speed–accuracy trade-off to inform both its development and adjustment
to meet the needs of populations for which these devices are meant to support. These
data can be used to establish baseline measures and monitor the patient over time. As
eye movements significantly change over the lifespan, these normative comparisons for
biomarker conclusions must be accurately determined using the appropriate age-related
considerations. When biomarkers are evaluated within the context of demographic factors,
the results may provide clinicians with important, previously unknown information that
can aid clinical decision-making [29].

The advancement of medical science has brought remarkable improvements in the
diagnosis and treatment of diseases. However, many diagnostic techniques remain inva-
sive, often causing patients discomfort, risk, and potential complications. This study has
identified eye movements as noninvasive biomarkers of human function correlated with
age that are easy to obtain and quantify. There are high correlations between pathologies of
eye movement and a host of neurological disorders [1]. Eye movement biomarkers have
great promise to revolutionize disease detection, monitoring, and treatment, enhancing pa-
tient care and outcomes. Developing noninvasive disease biomarkers with untold potential
benefits, current advancements, and future implications is essential.

Many diseases, particularly early-stage diseases, might not be easily accessible or
identifiable. Noninvasive biomarkers such as eye movements present an exciting purpose
to mitigate these issues as further clinical research develops a greater understanding of
human function in health and disease. The statistically different performance of eye
movements throughout the life span provides baseline measurements of function that
might be compared to each individual. Deviations from expected baseline performance
promote a deeper investigation of other human functions and systems integrity to identify
disease or functional pathology before it becomes clinically evident.

Early detection of pathology can frequently result in an improved prognosis. Eye
movement deviation from the baselines we have quantified can facilitate the early detection
of diseases crucial for conditions like cancer, cardiovascular diseases, and neurodegenera-
tive disorders. An early diagnosis often leads to better treatment outcomes and improved
survival rates. Patients can be expected to be more comfortable with biomarker identi-
fication through noninvasive technology instead of invasive testing, as described in our
investigation. This reduction in discomfort can lead to higher compliance rates for regular
monitoring and follow-up, which is essential for managing chronic diseases and monitoring
treatment efficacy.

A cost-effective consequence of utilizing eye tracking as a noninvasive diagnostic
method can be realized by requiring fewer resources and infrastructure than invasive tech-
niques. This cost reduction can make healthcare more accessible, particularly in resource-
limited settings. Eye tracking technology allows for frequent and real-time monitoring
of disease progression and treatment response monitoring, enabling better control and
management of various medical conditions correlated with brain function and volitional
eye movements.

Significant progress has been made in identifying and validating correlations between
eye movement, brain function, and various clinical syndromes. This investigation quan-
tifies eye movement by age groups with sample size and power necessary to establish
biomarkers across the life span, increasing the value of eye movement as a noninvasive
biomarker. The continued development of noninvasive biomarkers, such as those identi-
fied in this investigation, holds immense promise for the future of medicine. As research
progresses, identifying novel biomarkers and refining detection technologies will likely
lead to more accurate, efficient, and patient-friendly diagnostic methods. Moreover, nonin-
vasive biomarkers will significantly benefit the desire to establish personalized medicine.
These biomarkers can provide detailed insights into an individual’s unique health profile,
enabling tailored treatment strategies that improve outcomes and reduce adverse effects.
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Developing noninvasive biomarkers is a crucial advancement in modern medicine,
offering significant benefits over traditional invasive diagnostic methods. Eye movements
as noninvasive biomarkers can transform disease diagnosis and management by facilitating
early detection, improving patient comfort, reducing costs, and enabling real-time monitor-
ing. Continued research and innovation in this field will undoubtedly lead to improved
health outcomes and a higher quality of life for patients worldwide. As we move forward,
integrating these biomarkers into clinical practice will be essential in realizing their full
potential and advancing healthcare for all.

This investigation of eye movements across the human lifespan has generated sig-
nificant new knowledge, advancing our understanding of how eye movements change
with age. We have identified developmental biomarkers that can be used in clinical and
research settings. The primary breakthrough of this research lies in its ability to accurately
categorize individuals into distinct age groups based solely on eye movement data. This
was achieved with remarkable accuracy by studying a vast age range with a large sample
size, ensuring the robustness and generalizability of our findings.

One of the key findings in our work is the identification of age-specific changes in
eye movement patterns. This investigation revealed that the youngest and oldest age
groups exhibit more rapid changes in eye movements, resulting in narrower age spans
for these groups. This suggests that early development and late-life decline are periods of
heightened sensitivity to changes in eye movement behavior.

Our study uncovered complex patterns in eye movement behaviors that vary signif-
icantly with age. The analysis demonstrated a unique pattern: eye movement efficiency
improves until the early 30s and then gradually declines. This pattern was consistent across
various types of eye movements, including fixations, saccades, pursuits, and vergence. For
instance, latent smooth pursuit metrics showed higher (worse) values in young children,
a consistent reduction (improvement) in early adulthood, and then a gradual increase
(worsening) in older age.

Additionally, the speed–accuracy trade-off revealed further complexity in eye move-
ment patterns. While the youngest and oldest groups exhibited slower eye movement
speeds, elderly individuals demonstrated higher accuracy, suggesting a prioritization of
accuracy over speed. This finding indicates that older adults may adopt more cautious eye
movement strategies and are likely to avoid errors, which aligns with broader research on
age-related changes in cognitive and motor functions.

The new stratification of eye movement function by age developed from this research
has the potential to significantly upgrade assistive technologies and healthcare stakeholders’
decision-making. Accurately differentiating age groups based on eye movement data can
enhance the development of personalized assistive technologies. For example, eye-tracking
devices can be tailored for different age groups’ specific needs and capabilities, improving
usability and effectiveness for young and elderly individuals.

In healthcare, identifying age-related eye movement biomarkers can aid in early
detection and monitoring of neurological and cognitive disorders. Clinicians can use these
biomarkers to establish patient baseline measures and track changes, allowing for timely
interventions. For instance, deviations from normative eye movement patterns could signal
early stages of conditions such as Parkinson’s disease or dementia, enabling healthcare
providers to administer targeted treatments that may slow or mitigate disease progression.

Moreover, understanding the nuances of eye movement patterns across the lifespan
can inform the design of clinical studies and trials. Researchers can group participants
more accurately based on age-related eye movement data, reducing the potential for age
to confound study results. This precision can lead to more reliable and valid findings,
ultimately enhancing the quality of research on eye movements and cognitive health.

Our investigation has produced substantial new knowledge by elucidating how eye
movements change across the human lifespan while identifying developmental biomarkers
associated with these changes. The discovery of complex patterns in eye movement
behavior, such as the inverted bell curve and the speed–accuracy trade-off, adds depth to
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our understanding of the factors affecting eye movements. The functional performance
identified from this research holds significant promise for upgrading assistive technologies
and informing healthcare decision-making. Eye movement biomarkers can improve patient
outcomes and advance developmental and clinical research by enabling early detection
and personalized interventions.

One of this research’s primary breakthroughs is its remarkable ability to accurately
categorize individuals into distinct age groups based solely on eye movement data. This
innovative approach leverages the power of semi-supervised machine learning to analyze
and interpret complex patterns in eye movements, yielding a high accuracy rate of 94.67%.
Such precision enhances our understanding of developmental biomarkers and opens new
avenues for practical applications in healthcare and technology.

Eye movements are a window into the brain’s functioning and reflect many cognitive
processes. The four major types of eye movements—fixations, saccades, pursuits, and
vergence—are influenced by age-related changes in neural and ocular systems. By capturing
and analyzing these movements, researchers and clinicians can identify subtle variations
correlating with different stages of human development and aging. This study collected
eye movement data from a large and diverse sample of 46,655 participants ranging from
6 to 80 years old. This extensive dataset enabled the machine learning model to detect
and learn the unique characteristics of eye movements associated with each age group.
This granular analysis revealed patterns that are not easily discernible through traditional
observational methods, thus highlighting the sophistication and capability of machine
learning in biomedical research.

This study’s semi-supervised machine learning model is designed to handle vast
numbers of data, identify patterns, and make accurate predictions. It combines elements of
supervised learning, where the model is trained on a labeled dataset, with unsupervised
learning, where it identifies hidden patterns in unlabeled data. This hybrid approach
enhances the model’s ability to generalize from the data and improves accuracy.

By inputting eye movement data into the model, we stratified individuals into 12 dis-
tinct age groups based on intricate details of eye movement behavior, such as the frequency
and duration of fixations, the amplitude and speed of saccades, the smoothness of pursuit
movements, and the coordination of vergence. These parameters vary systematically with
age, reflecting developmental and degenerative changes in the brain and visual system.

The ability to categorize individuals into age groups based on eye movement data
has profound implications for identifying developmental biomarkers. Developmental
biomarkers are measurable indicators that reflect the human body’s average growth and
aging processes. In this context, eye movement patterns serve as biomarkers that can track
cognitive and neural development progression across the lifespan. The breakthrough in
accurately categorizing age groups based on eye movement data has significant practical
applications. In healthcare, this capability can enhance the early detection and monitoring
of neurological and cognitive disorders. Clinicians can use age-specific eye movement
biomarkers to identify deviations from typical development, enabling timely interventions.
For example, abnormalities in eye movement patterns could indicate early stages of neu-
rodegenerative diseases like Parkinson’s or Alzheimer’s, allowing for earlier diagnosis and
targeted treatment.

Using assistive technologies, this research can inform the development of personal-
ized eye-tracking devices. These devices can be tailored to accommodate different age
group’s specific needs and capabilities, improving usability and effectiveness for young
children and elderly individuals. By incorporating age-related variations in eye movement
behavior, these technologies can provide users with more accurate and reliable support.
Furthermore, the insights gained from this study can improve the design of clinical trials
and research studies. By grouping participants based on precise age-related eye movement
data, researchers can reduce the potential for age to confound study results. This precision
enhances the validity and reliability of research findings, ultimately advancing the field of
developmental and clinical neuroscience.



Brain Sci. 2024, 14, 686 13 of 23

Accurately categorizing individuals into distinct age groups based solely on eye move-
ment data represents a significant breakthrough in biomedical research. This innovative
approach leverages the power of machine learning to uncover intricate patterns in eye
movements, providing valuable insights into developmental biomarkers. The practical
applications of this research are vast, ranging from early detection and monitoring of
neurological disorders to the development of personalized assistive technologies. This
study paves the way for improved healthcare outcomes and technological innovations by
advancing our understanding of age-related changes in eye movement behavior.

Age-related diseases manifest at different stages of life, each with unique challenges
and implications. Understanding the progression and characteristics of these diseases from
childhood to old age is crucial for effective diagnosis, treatment, and management. This
investigation explores the spectrum of age-related eye movement performance. It promotes
applications to health conditions that affect individuals at various life stages while allowing
for discussion of their impact on health and quality of life.

During childhood, age-related diseases often stem from congenital and developmental
origins. These conditions can significantly impact physical, cognitive, and emotional
development, requiring early intervention to improve long-term outcomes. Eye movement
biomarkers can document whether a child has obtained a similar performance capability
as others of the same age. These biomarkers also serve to assist in the assessment of the
success or failure of a variety of treatment interventions.

Age-related diseases span the entire human lifespan, from congenital and developmen-
tal disorders in childhood to chronic and neurodegenerative conditions in old age. Each
stage of life presents unique challenges and opportunities for intervention. Understanding
the progression and impact of these diseases is crucial for developing effective prevention,
diagnosis, and treatment strategies. Identifying and quantifying eye movement perfor-
mance by age has been central to this investigation. By addressing the specific needs of
individuals at different life stages, healthcare providers can improve outcomes and enhance
the quality of life for patients across the lifespan. Continued research and innovation are
essential to tackle the evolving landscape of age-related diseases and to ensure optimal
care for all individuals.

The continued development of eye movements as noninvasive biomarkers holds
immense promise for the future of medicine. Identifying novel biomarkers and refining
detection technologies will likely lead to even more accurate, efficient, and patient-centered
diagnostic methods as research progresses. Developing noninvasive biomarkers is a crucial
advancement in modern medicine, offering significant benefits over traditional invasive
diagnostic methods. Eye movement quantification fits this developmental challenge well.
Noninvasive eye movement biomarkers can potentially transform disease diagnosis and
management by facilitating early detection, improving patient comfort, reducing costs,
and enabling real-time monitoring. Continued research and innovation in this field will
undoubtedly lead to improved health outcomes and a higher quality of life for patients
worldwide. As we move forward, integrating these eye movement biomarkers into clinical
practice will be essential in realizing their full potential and advancing healthcare for all.

5. Conclusions

In conclusion, this study aimed to benchmark age-based developmental biomarkers
that can be used as milestones for clinicians and researchers to inform decision-making
on patients’ health and wellness. The work revealed that machine learning could differ-
entiate individuals into age groups predicated on eye movements. This differentiation
was achieved with high accuracy. Additionally, patterns regarding biomarkers across age
groups were illuminated. More rapid changes were seen in children and elderly individ-
uals. At the same time, very few changes were observed in young adults. Middle-aged
individuals experienced changes every five to six years. This work revealed an inverse bell
curve. In this regard, across multiple eye movement types, children and elderly individuals
had worse scores than young adults and middle-aged individuals. There was also a notable
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speed–accuracy trade-off among elderly individuals, with this group experiencing low
speed but high accuracy.

It should be noted that children, too, have eye movement at a slower speed than other
age groups. The application of this research in a clinical setting should be explored to
assess its potential to detect disorders (e.g., Parkinson’s). Effective implementation and
application in the real world could enhance the ecological validity of this work’s findings.
It is the hope that this study and its results can be added to the toolkit for developmentalists
and others who seek to evaluate and understand eye movement and associated neural
substrates in typical (and, by default, atypical) development.
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Appendix A

Table A1. Circular smooth pursuit task, eye movement type, eye measured, variable name, and defi-
nition.

Eye Type Variable Name Eye Algorithm Definition

Saccade Saccade Percentage Both Eye movements greater than 30 degrees per second and calculated as
a percentage of test time.

Fixation Fixation Percentage Both A stopping point within 0.25 degree of dispersion for ≥100 ms.
Reported as a percentage of the test time.

Pursuit Horizontal Synchronization Both How far off on the X plane (coordinate) the user’s eyes were during
the test. Perfect synchronization is a score of 1.0.

Pursuit Vertical Synchronization Both How far off on the Y plane (coordinate) the user’s eyes were during
the test. Perfect synchronization is a score of 1.0.

Pursuit Predictive Smooth Pursuit Both
The location of the user’s eyes within a velocity range of the target
and positioned ahead or in-front-of the stimuli between 2 and 5 cm
and reported as a percentage.

Pursuit Latent Smooth Pursuit Both
The location of the user’s eyes within a velocity range of the target
and positioned behind the stimuli between 2 and 5 cm and reported
as a percentage.

Pursuit Smooth Pursuit Efficiency Both The error in the users’ gaze is from the ideal pathway. Lower is better,
measured in millimeters.

Pursuit Smooth Pursuit Variance Both
The average variance from the ideal pathway from three segments of
the pathway, middle, left/right, or up/down, measured
in millimeters.
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Table A1. Cont.

Eye Type Variable Name Eye Algorithm Definition

Vergence Disassociated Phoria Both The deviation of the line of sight inward (eso +) or outward (exo −).

Pursuit Gaze Radius Difference 2 Both The differences in the size of gaze plots, between left and right eye at
67.5 degrees, measured in millimeters.

Pursuit Gaze Radius Difference 3 Both The differences in the size of gaze plots, between left and right eye at
112.5 degrees, measured in millimeters.

Pursuit Gaze Radius Difference 4 Both The differences in the size of gaze plots, between left and right eye at
157.5 degrees, measured in millimeters.

Pursuit Gaze Radius Difference 5 Both The differences in the size of gaze plots, between left and right eye at
202.5 degrees, measured in millimeters.

Pursuit Gaze Radius Difference 6 Both The differences in the size of gaze plots, between left and right eye at
247.5 degrees, measured in millimeters.

Pursuit Gaze Radius Difference 8 Both The differences in the size of gaze plots, between left and right eye at
337.5 degrees, measured in millimeters.

Pursuit Size Difference Both The differences in the size of gaze plots, between left and right eye,
measured in millimeters.

Pursuit Shape Difference Both The deviation of gaze plot from its ideal circular shape, measured
in millimeters.

Table A2. Horizontal smooth pursuit task, eye movement type, eye measured, variable name, and
definition.

Eye Type Variable Name Eye Algorithm Definition

Pursuit Pathway Length Difference
Left Side Both

The average difference in distance between the right and left eye gaze
pathways on the left eccentric gaze position. Ideal score is zero.
Lower is better, measured in millimeters.

Pursuit Pathway Length Difference
Right Side Both

The average difference in distance between the right and left eye gaze
pathways on the right eccentric gaze position. Ideal score is zero.
Lower is better, measured in millimeters.

Blink Blink Rate Both The number of blinks over the total test time (frequency of blinks).

Blink Blink Number Both The total tally of blinks

Pursuit Smooth Pursuit Percentage Both Eye movements that follow the target within 30 degrees per second
target and are reported as a percentage of the test time.

Saccade Saccade Percentage Both Eye movements greater than 30 degrees per second and calculated as
a percentage of test time.

Fixation Fixation Percentage Both A stopping point within 0.25 degree of dispersion for ≥ 100 ms.
Reported as a percentage of the test time.

Saccade Saccade Number Both The total tally of saccades recorded throughout the test.

Pursuit Smooth Pursuit Gain Both Eye movements that are ahead of the target that fall within a
4.36 degrees error radius

Saccade Saccade Percentage Left side Both The number of saccades on the left portion of the screen reported as a
percentage of test time.

Pursuit Horizontal Synchronization Both How far from the X plane (coordinate) the user’s eyes were during
the test. Perfect synchronization is a score of 1.0.

Vergence Disassociated Phoria Both The deviation of the line of sight inward (eso +) or outward (exo −).
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Table A2. Cont.

Eye Type Variable Name Eye Algorithm Definition

Pursuit Eccentric Gaze Mean Left Side Both The mean distance between gaze points to the ideal path of stimuli in
pursuit, on left side of the stimuli path (left 1/3rd)

Pursuit Eccentric Gaze Mean Middle Both The mean distance between gaze points to the ideal path of stimuli in
pursuit, in middle section of the stimuli path (middle 1/3rd)

Pursuit Eccentric Gaze Mean
Right Side Both The mean distance between gaze points to the ideal path of stimuli in

pursuit, on right side of the stimuli path (right 1/3rd)

Pursuit Efficiency Both The error in the gaze following a smooth pursuit stimulus.

Pursuit Variance Both The average variance from the ideal pathway. We look at variance in
three segments of the pathway, middle, left/right or up/down.

Pursuit Smooth Pursuit Variance
Difference Both The difference between the average variance from the ideal pathway,

from three segments of the pathway, middle, left/right, or up/down.

Table A3. Vertical Smooth Pursuit Task, Eye Movement Type, Eye Measured, Variable Name, and
Definition.

Eye Type Variable Name Eye Algorithm Definition

Pursuit Pathway Length Difference
Top Side Both

The average difference in distance between the right and left eye gaze
pathways in the top side of the screen. Ideal score is zero. Lower is
better, measured in millimeters.

Pursuit Pathway Length Difference
Bottom Side Both

The average difference in distance between the right and left eye gaze
pathways in the bottom side of the screen. Ideal score is zero. Lower
is better, measured in millimeters.

Blink Blink Rate Both The number of blinks over the total test time (frequency of blinks).

Saccade Saccade Number Both The total tally of saccades recorded throughout the test.

Pursuit Smooth Pursuit Gain Both Eye movements that are ahead of the target that fall within a
4.36 degree error radius

Pursuit Vertical Synchronization Both How far from the Y plane (coordinate) the user’s eyes were during
the test. Perfect synchronization is a score of 1.0.

Vergence Disassociated Phoria Both The deviation of the line of sight inward (eso +) or outward (exo −).

Pursuit Eccentric Gaze Variability
Middle Both The variability in the middle portion of the screen that is outside the

“box”. Lower is better, measured in millimeters.

Pursuit Efficiency Both The error in the gaze following a smooth pursuit stimulus, measured
in millimeters.

Pursuit Variance Both
The average variance from the ideal pathway. We look at the variance
in three segments of the pathway, middle, left/right, or up/down.
Measured in millimeters.

Pursuit Eccentric Gaze Variability
Bottom Both The variability on the bottom portion of the screen that is outside the

“box.” Lower is better, measured in millimeters.

Pursuit Eccentric Gaze Mean Middle
Difference Both The mean distance between gaze points to the ideal path of stimuli in

pursuit, in middle section of the stimuli path (middle 1/3rd)

Pursuit Smooth Pursuit Variance
Difference Both

The difference in the average variance from the ideal pathway. We
look at variance in three segments of the pathway, middle, left/right,
or up/down.
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Table A4. Horizontal saccades task, eye movement type, rye measured, variable name, and definition.

Eye Type Variable Name Eye Algorithm Definition

Fixation Fixation Number Both Stopping points or about-turn of the user’s gaze. Fixations are tallied
throughout the test and reported as the total number of fixations.

Fixation On Target Both On-Target refers to accuracy and proximity of eye gaze point to the dot
when fixating. Measured in millimeters.

Fixation Band 2 Under Both Total number of targets undershot by 9–18 mm.

Fixation Band 3 Over Both Total number of targets overshot on the horizontal plane by 18–36 mm.

Fixation Band 3 Under Both Total number of targets undershot on the horizontal plane by 18–36 mm.

Fixation Missed Both No target is hit, and the user has passed the center of the screen in the
direction of the target.

Fixation Missed Under Right Side Both The user misses and hits before the right target. Miss is more than 36 mm.

Saccade Saccadic Efficiency Both The average distance the users’ saccade is from the ideal pathway.
Measured in millimeters.

Saccade Saccadic Targeting Both The distance each “hit”, or fixation was compared to the ideal target.

Saccade Saccadic Velocity Both The average velocity made by the saccades across the test time.
Measured in degrees per second.

Saccade Speed Accuracy Trade Off Both Speed divided by accuracy. Measured as degrees per second divided by
millimeters.

Saccade Saccadic Recovery Both
The difference in the path taken before and after a fixation. A wide,
looping path is inefficient. A narrow path is ideal. Measured
in millimeters.

Saccade Saccadic Amplitude Both Average distance between consecutive turning points. Measured
in millimeters.

Saccade Q Ratio Both The ratio of “Peak Velocity” to “Average Velocity” in the
saccadic interval.

Table A5. Vertical saccades task, eye movement type, eye measured, variable name, and definition.

Eye Type Variable Name Eye Algorithm Definition

Fixation Fixation Number Both Stopping points or about-turn of the user’s gaze. Fixations are tallied
throughout the test and reported as the total number of fixations.

Fixation On Target Both On-Target refers to accuracy and proximity of eye gaze point to the dot when
fixating. Measured in millimeters.

Fixation Band 2 Over Both Total number of targets overshot by 9–18 mm.

Fixation Band 2 Under Both Total number of targets undershot by 9–18 mm.

Fixation Band 3 Under Both Total number of targets undershot by 18–36 mm.

Fixation Missed Both No target is hit, and the user has passed the center of the screen in the
direction of the target.

Saccade Saccadic Efficiency Both The average distance the users’ saccade is from the ideal pathway. Measured
in millimeters.

Saccade Saccadic Targeting Both The distance each “hit”, or fixation was compared to the ideal target.

Saccade Saccadic Velocity Both The average velocity made by the saccades across the test time. Measured in
degrees per second.

Saccade Saccadic Variance Both The spread or variability in the saccadic pathways.

Saccade Saccadic Amplitude Both Average distance between consecutive turning points. Measured
in millimeters.

Saccade Q Ratio Both The ratio of “Peak Velocity” to “Average Velocity” in the saccadic interval.
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Table A6. Fixation stability task, eye movement type, eye measured, variable name, and definition.

Eye Type Variable Name Eye Algorithm Definition

Vergence Depth Both

The difference between the point of convergence and the screen. The ideal
result is zero. Negative numbers show a point of convergence behind the
screen. A positive number shows a point of convergence in front of the
screen. Close to zero is best.

Vergence Convergence Point Both The average distance between the “point of convergence of eyes” from the
stimuli location on z-axis in a 3D plane.

Fixation
Bivariate Contour
Ellipse Analysis
(BCEA)

Both
Microsaccades and drifts of the human eye cause corrections of the eye back
to a central point. These slight eye movements form an area of dispersion in
an ellipse shape measured by the BCEA.

Fixation Gaze Position 1 Left The percentage of gaze that fell less than or equal to 1 degree of the target
center from the left eye only.

Fixation Gaze Position 1 Right Percentage of gaze that fell less than or equal to 1 degree of the target center
from the right eye only.

Fixation Gaze Position 3 Left The percentage of gaze that fell between 2 and 4 degrees from the target
center from the left eye only.

Fixation Gaze Position 3 Right The percentage of gaze that fell between 2 and 4 degrees from the target
center from the left eye only.

Fixation Disassociated Tropia Both
Deviation of the line of sight, where one eye is above the other. If it is
negative value, then the left eye is higher than the right. If a positive value,
then the right eye is higher than the left. Close to zero is best.

Fixation Horizontal Targeting
Displacement Left The displacement between target (FS stimuli) and the Mean of gaze points

corresponding to that stimulus, on X-axis. Measured in millimeters.

Fixation Horizontal Targeting
Displacement Right The displacement between target (FS stimuli) and the Mean of gaze points

corresponding to that stimulus, on Y-axis. Measured in millimeters.

Fixation Vertical Targeting
Displacement Left The displacement between target (FS stimuli) and the mean of gaze points

corresponding to that stimulus, on the Y-axis. Measured in millimeters.

Fixation Vertical Targeting
Displacement Right The displacement between target (FS stimuli) and the mean of gaze points

corresponding to that stimulus, on the Y-axis. Measured in millimeters.

Fixation Fixation Dispersion Right The distance between each gaze point and target stimuli averaged over the
entire test for all gaze points. Measured in millimeters.

Table A7. Pupil measures, calibration task, eye measured, variable name, and definition.

Eye Type Variable Name Eye Definition

Pupil Pupil Diameter Mean Both The average size of the pupil when the stimuli is centered on the screen.

Pupil Pupil Diameter Difference Both The difference in size between the left and right pupils. Measured
in millimeters.

Appendix B

Table A8. Circular smooth pursuit median and interquartile range for the 17 contributing eye
movement variables.

Saccade % Fixation % Horizontal Vertical Predictive Smooth Latent Smooth
Synchronization Synchronization Pursuit Pursuit

1 4.43 (2.75−6.43) 4.96 (4.07−5.82) 0.97 (0.96−0.97) 0.92 (0.90−0.94) 4.31 (2.23−7.23) 26.57 (20.50−33.02)
2 3.83 (2.28−5.83) 4.77 (4.01−5.59) 0.96 (0.96−0.97) 0.92 (0.90−0.94) 3.47 (1.51−6.53) 22.71 (16.77−29.13)
3 3.23 (1.78−5.36) 4.71 (3.97−5.42) 0.96 (0.96−0.97) 0.92 (0.91−0.94) 2.92 (1.22−5.70) 19.51 (13.71−25.64)
4 2.37 (1.24−4.27) 4.64 (3.94−5.34) 0.96 (0.96−0.97) 0.93 (0.91−0.94) 2.06 (0.78−4.45) 16.19 (10.96−22.57)
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5 2.07 (1.12−3.83) 4.71 (4.03−5.39) 0.96 (0.96−0.97) 0.93 (0.91−0.94) 1.79 (0.66−4.14) 16.10 (10.68−22.42)
6 2.21 (1.15−4.01) 4.74 (4.05−5.43) 0.96 (0.96−0.97) 0.92 (0.91−0.94) 1.89 (0.72−4.17) 16.64 (11.12−22.87)
7 2.34 (1.22−4.21) 4.71 (4.03−5.41) 0.96 (0.96−0.97) 0.92 (0.90−0.94) 1.93 (0.70−4.41) 17.18 (11.61−23.99)
8 2.44 (1.30−4.34) 4.70 (4.02−5.41) 0.96 (0.96−0.97) 0.92 (0.90−0.94) 2.02 (0.73−4.76) 18.28 (12.32−25.78)
9 2.77 (1.45−4.90) 4.72 (3.99−5.42) 0.96 (0.96−0.97) 0.92 (0.90−0.94) 2.32 (0.89−5.33) 19.33 (12.98−26.53)

10 3.06 (1.61−5.33) 4.72 (3.98−5.41) 0.96 (0.96−0.97) 0.91 (0.89−0.93) 2.52 (0.94−5.39) 20.66 (14.14−28.49)
11 3.82 (2.11−6.02) 4.68 (3.96−5.43) 0.96 (0.96−0.97) 0.91 (0.89−0.93) 3.44 (1.35−7.22) 21.52 (15.13−28.66)
12 4.54 (2.56−6.87) 4.74 (3.81−5.46) 0.96 (0.96−0.97) 0.91 (0.89−0.93) 3.87 (1.68−6.52) 22.53 (16.07−30.67)

Smooth Pursuit Smooth Pursuit Disassociated Gaze Radius Gaze Radius Gaze Radius
Efficiency Variance Phoria Difference 2 Difference 3 Difference 4

1 14.02 (12.15−18.16) 13.41 (9.14−21.38) −0.31 (−0.66−0.05) 47.37 (44.69−50.25) 46.56 (43.23−49.62) 46.51 (43.24−49.15)
2 12.72 (11.37−15.63) 13.47 (8.83−19.75) −0.27 (−0.64−0.06) 48.35 (45.87−50.84) 46.75 (43.67−49.64) 47.13 (44.07−50.08)
3 11.83 (10.80−13.77) 12.46 (8.20−18.10) −0.26 (−0.65−0.09) 49.16 (46.63−51.67) 47.10 (43.94−49.97) 47.53 (44.74−50.47)
4 11.15 (10.30−12.43) 12.49 (7.99−17.72) −0.31 (−0.70−0.04) 49.22 (46.92−51.62) 47.42 (44.79−50.03) 47.82 (45.08−50.49)
5 11.13 (10.32−12.30) 12.66 (8.02−17.98) −0.35 (−0.73−0.01) 49.11 (46.74−51.52) 47.65 (45.06−50.32) 47.66 (44.94−50.48)
6 11.25 (10.40−12.42) 13.03 (8.43−18.47) −0.37 (−0.75−0.01) 49.37 (46.91−51.63) 47.79 (45.01−50.26) 47.92 (45.18−50.75)
7 11.39 (10.51−12.66) 13.14 (8.50−18.33) −0.35 (−0.73−0.01) 49.20 (46.76−51.64) 47.54 (44.73−50.25) 47.84 (45.00−50.60)
8 11.63 (10.68−13.03) 13.62 (8.71−18.67) −0.35 (−0.74−0.00) 49.09 (46.57−51.64) 47.41 (44.51−50.26) 47.92 (44.93−50.77)
9 11.81 (10.80−13.40) 13.28 (8.60−18.66) −0.33 (−0.72−0.00) 49.09 (46.46−51.67) 47.57 (44.44−50.73) 47.95 (44.70−50.94)

10 12.13 (11.03−13.75) 13.09 (8.59−18.65) −0.33 (−0.71−0.05) 49.10 (46.45−51.81) 47.21 (43.93−50.32) 48.20 (45.16−51.25)
11 12.64 (11.31−14.53) 13.99 (9.11−19.39) −0.32 (−0.71−0.04) 48.43 (45.71−51.15) 47.27 (43.82−50.98) 47.81 (44.50−50.92)
12 12.74 (11.80−14.97) 13.83 (10.11−19.53) −0.34 (−0.81−0.05) 48.11 (45.42−51.95) 46.65 (43.10−50.38) 48.70 (45.05−51.57)

Gaze Radius Gaze Radius Gaze Radius Size Difference Shape Difference
Difference 5 Difference 6 Difference 8

1 47.15 (44.82−49.96) 47.50 (44.23−50.19) 47.32 (45.07−49.80) 47.42 (45.92−48.73) 4.56 (3.46−6.32)
2 47.12 (43.97−49.78) 47.96 (45.06−50.56) 48.11 (45.49−50.39) 47.80 (46.28−49.01) 4.39 (3.44−5.90)
3 46.93 (44.00−49.62) 48.00 (45.09−50.54) 48.39 (46.03−50.73) 48.15 (46.83−49.28) 4.30 (3.41−5.68)
4 47.02 (44.33−49.60) 47.79 (45.22−50.26) 48.42 (46.11−50.68) 48.27 (47.17−49.27) 4.11 (3.24−5.25)
5 47.12 (44.44−49.54) 47.78 (45.13−50.40) 48.33 (45.86−50.53) 48.26 (47.19−49.28) 4.07 (3.23−5.22)
6 47.15 (44.48−49.67) 47.89 (45.35−50.38) 48.34 (46.08−50.59) 48.33 (47.26−49.35) 4.11 (3.25−5.33)
7 47.07 (44.39−49.69) 48.03 (45.45−50.71) 48.21 (45.90−50.50) 48.23 (47.13−49.31) 4.15 (3.27−5.35)
8 47.01 (44.24−49.84) 48.28 (45.52−50.99) 48.10 (45.60−50.41) 48.21 (47.04−49.37) 4.26 (3.35−5.47)
9 47.16 (44.43−50.14) 48.58 (45.56−51.25) 48.19 (45.61−50.61) 48.26 (47.03−49.50) 4.46 (3.50−5.76)

10 47.07 (44.08−49.89) 48.67 (45.66−51.77) 48.01 (45.39−50.61) 48.25 (46.98−49.42) 4.47 (3.56−5.77)
11 47.24 (43.38−50.22) 48.50 (45.59−52.09) 47.93 (44.70−50.28) 48.08 (46.56−49.38) 4.70 (3.66−6.23)
12 46.98 (43.15−50.23) 49.03 (45.01−52.30) 47.35 (43.68−50.10) 47.90 (46.50−49.33) 5.23 (4.07−6.45)

Table A9. Horizontal smooth pursuit median and interquartile range for the 18 contributing eye
movement variables.

Pathway Length Pathway Length Blink Rate Blink Number Smooth Pursuit % Saccade %
Difference (L) Difference (R)

1 0.31 (−2.27−2.88) −1.15 (−5.31−1.60) 0.00 (0.00−0.01) 2.00 (0.00−3.00) 92.05 (89.12−94.29) 2.52 (1.20−4.49)
2 0.63 (−1.57−3.63) −1.08 (−4.47−2.06) 0.01 (0.00−0.01) 2.00 (0.00−3.00) 92.55 (89.67−94.84) 2.16 (0.95−4.17)
3 0.76 (−1.52−3.93) −1.10 (−4.32−2.11) 0.01 (0.00−0.01) 1.00 (0.00−3.00) 93.17 (90.42−95.31) 1.82 (0.88−3.71)
4 1.19 (−1.08−4.47) −1.41 (−4.73−1.70) 0.01 (0.00−0.02) 1.00 (0.00−3.00) 93.71 (91.21−95.78) 1.38 (0.81−3.02)
5 1.46 (−0.80−4.84) −2.08 (−5.44−1.15) 0.01 (0.00−0.01) 2.00 (1.00−4.00) 93.70 (91.24−95.68) 1.37 (0.87−2.91)
6 1.43 (−0.87−4.54) −1.86 (−5.16−1.22) 0.01 (0.00−0.01) 2.00 (1.00−4.00) 93.59 (91.05−95.74) 1.39 (0.76−3.05)
7 1.33 (−0.77−4.54) −2.30 (−5.48−0.81) 0.01 (0.00−0.01) 2.00 (1.00−4.00) 93.44 (90.88−95.56) 1.45 (0.81−3.08)
8 1.29 (−0.96−4.46) −2.51 (−5.79−0.60) 0.01 (0.00−0.01) 2.00 (1.00−4.00) 93.46 (90.86−95.66) 1.45 (0.62−3.20)
9 1.16 (−1.28−4.26) −2.60 (−5.91−0.48) 0.01 (0.00−0.01) 2.00 (1.00−4.00) 93.44 (90.60−95.72) 1.48 (0.46−3.21)

10 0.88 (−1.53−3.74) −2.45 (−5.62−0.65) 0.01 (0.00−0.01) 2.00 (1.00−4.00) 93.55 (90.62−95.72) 1.43 (0.48−3.19)
11 0.58 (−1.62−3.60) −2.60 (−6.05−1.09) 0.01 (0.00−0.01) 2.00 (1.00−4.00) 93.07 (90.20−95.47) 1.63 (0.53−3.41)
12 0.62 (−1.83−3.23) −2.77 (−5.58−1.28) 0.00 (0.00−0.01) 2.00 (1.00−4.00) 93.54 (90.48−95.91) 1.80 (0.44−3.66)

Fixation % Saccade Number Smooth Pursuit Gain Saccade % (L) Horizontal Disassociated
Synchronization Phoria

1 5.10 (3.37−6.64) 4.00 (3.00−6.00) 10.91 (5.69−17.12) 1.09 (0.17−2.29) 0.89 (0.86−0.91) 0.45 (0.18−0.78)
2 4.83 (3.25−6.71) 4.00 (2.00−6.00) 11.38 (6.16−17.98) 0.90 (0.15−2.09) 0.89 (0.86−0.92) 0.44 (0.20−0.82)
3 4.65 (3.14−6.46) 3.00 (2.00−5.00) 11.43 (5.80−19.28) 0.72 (0.12−1.77) 0.89 (0.86−0.91) 0.45 (0.21−0.82)
4 4.26 (2.39−6.13) 2.00 (1.00−4.00) 9.92 (4.45−17.94) 0.45 (0.00−1.37) 0.88 (0.86−0.91) 0.48 (0.22−0.89)
5 4.33 (2.84−6.22) 2.00 (1.00−4.00) 9.04 (3.76−17.07) 0.47 (0.00−1.37) 0.88 (0.86−0.91) 0.51 (0.25−0.95)
6 4.29 (2.99−6.43) 2.00 (1.00−4.00) 9.77 (4.21−17.89) 0.45 (0.00−1.43) 0.88 (0.86−0.91) 0.53 (0.25−0.93)
7 4.68 (3.11−6.46) 3.00 (1.00−5.00) 10.07 (4.57−18.30) 0.50 (0.00−1.51) 0.88 (0.86−0.91) 0.52 (0.23−0.92)
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8 4.42 (2.73−6.55) 3.00 (1.00−5.00) 11.66 (5.04−20.93) 0.51 (0.00−1.57) 0.88 (0.86−0.91) 0.52 (0.25−0.90)
9 4.48 (2.66−6.47) 3.00 (1.00−5.00) 12.54 (5.86−22.31) 0.56 (0.13−1.62) 0.88 (0.86−0.91) 0.51 (0.24−0.87)

10 4.45 (2.92−6.53) 3.00 (1.00−5.00) 13.46 (6.31−23.48) 0.49 (0.00−1.56) 0.88 (0.86−0.91) 0.50 (0.22−0.84)
11 4.77 (3.01−6.77) 3.00 (2.00−5.00) 16.27 (9.03−25.13) 0.67 (0.14−1.65) 0.88 (0.85−0.91) 0.48 (0.23−0.85)
12 4.05 (2.43−6.17) 3.00 (2.00−6.00) 19.13 (9.18−27.35) 0.84 (0.14−1.77) 0.88 (0.85−0.91) 0.49 (0.21−0.86)

Efficiency Variance Smooth Pursuit Eccentric Gaze Eccentric Gaze Eccentric Gaze
Variance Difference Mean Left Side Mean Middle Mean Right Side

1 11.59 (7.84−20.24) 12.35 (7.23−16.77) 1.09 (0.48−2.43) 1.03 (−0.88−2.82) 0.66 (−1.02−2.38) 0.80 (−0.98−2.69)
2 9.45 (7.28−15.96) 12.40 (8.01−17.22) 0.92 (0.39−2.12) 0.61 (−1.32−2.47) 0.25 (−1.37−1.96) 0.63 (−1.26−2.46)
3 8.29 (6.77−12.66) 12.07 (7.73−16.60) 0.84 (0.37−2.01) 0.52 (−1.47−2.49) 0.12 (−1.54−1.90) 0.47 (−1.41−2.28)
4 7.32 (6.32−9.51) 11.81 (7.77−16.08) 0.90 (0.36−2.12) 0.48 (−1.46−2.52) 0.14 (−1.58−1.88) 0.36 (−1.54−2.26)
5 7.25 (6.33−8.92) 11.95 (8.12−16.52) 0.92 (0.37−2.09) 0.60 (−1.33−2.72) 0.15 (−1.64−1.94) 0.38 (−1.50−2.38)
6 7.33 (6.40−9.46) 12.36 (8.29−16.66) 0.98 (0.39−2.21) 0.66 (−1.25−2.72) 0.06 (−1.66−1.82) 0.37 (−1.53−2.45)
7 7.48 (6.45−9.76) 12.51 (8.29−16.86) 0.95 (0.38−2.42) 0.93 (−1.14−3.02) −0.07 (−1.79−1.81) 0.40 (−1.53−2.39)
8 7.55 (6.48−9.99) 12.63 (8.68−16.81) 1.06 (0.44−2.68) 1.24 (−0.96−3.39) −0.26 (−2.13−1.77) 0.37 (−1.70−2.40)
9 7.61 (6.57−10.04) 12.40 (8.38−16.63) 1.19 (0.46−3.04) 1.35 (−0.99−3.58) −0.34 (−2.22−1.73) 0.50 (−1.72−2.61)

10 7.78 (6.62−10.22) 12.35 (8.30−16.62) 1.26 (0.47−3.26) 1.40 (−0.68−3.69) −0.42 (−2.48−1.65) 0.38 (−1.84−2.79)
11 8.13 (6.90−11.25) 12.48 (8.29−16.89) 1.22 (0.49−3.49) 1.83 (−0.33−4.29) −0.07 (−2.12−1.95) 0.65 (−1.58−2.95)
12 8.68 (7.11−12.38) 13.26 (8.43−16.71) 1.38 (0.49−3.32) 2.12 (−0.37−4.91) −0.28 (−2.43−1.86) −0.07 (−2.18−2.55)

Table A10. Vertical smooth pursuit median and interquartile range for the 13 contributing eye
movement variables.

Pathway Length Pathway Length Blink Rate Saccade Number Smooth Pursuit Vertical Disassociated
Difference (Top) Difference (Bottom) Gain Synchronization Phoria

1 −0.41 (−3.49−1.80) 0.83 (−2.70−4.45) 0.01 (0.00−0.01) 8.00 (6.00−11.00) 22.67 (15.68−30.16) 0.78 (0.73−0.82) 0.49 (0.21−0.81)
2 0.03 (−2.70−2.72) 0.67 (−3.13−4.43) 0.01 (0.00−0.01) 8.00 (5.00−11.00) 23.97 (16.78−31.83) 0.76 (0.72−0.80) 0.49 (0.23−0.90)
3 0.14 (−2.55−2.97) 0.54 (−3.32−4.42) 0.01 (0.00−0.01) 7.00 (4.00−10.00) 26.01 (17.15−34.89) 0.75 (0.71−0.78) 0.51 (0.23−0.91)
4 0.17 (−2.52−2.91) 0.35 (−3.29−4.03) 0.01 (0.00−0.02) 5.00 (2.00−8.00) 24.86 (15.78−35.35) 0.74 (0.70−0.77) 0.53 (0.24−0.98)
5 0.13 (−2.46−3.03) 0.60 (−2.90−4.10) 0.01 (0.00−0.01) 4.00 (2.00−7.00) 24.29 (14.09−35.16) 0.73 (0.70−0.77) 0.57 (0.27−1.04)
6 0.02 (−2.68−2.90) 0.59 (−2.83−4.17) 0.01 (0.00−0.01) 4.00 (2.00−7.00) 24.14 (15.16−35.70) 0.73 (0.70−0.77) 0.57 (0.26−1.02)
7 0.01 (−2.73−2.77) 0.37 (−3.23−3.99) 0.01 (0.00−0.01) 4.00 (2.00−8.00) 25.40 (15.49−36.73) 0.73 (0.70−0.77) 0.54 (0.25−1.01)
8 −0.03 (−2.83−2.66) 0.63 (−2.93−4.21) 0.01 (0.00−0.01) 5.00 (2.00−8.00) 27.30 (17.00−38.15) 0.73 (0.70−0.77) 0.53 (0.25−0.95)
9 −0.24 (−3.09−2.68) 0.55 (−3.00−4.32) 0.01 (0.00−0.01) 5.00 (3.00−9.00) 29.43 (19.15−40.96) 0.74 (0.70−0.77) 0.51 (0.25−0.91)
10 −0.10 (−2.97−2.86) 0.43 (−3.13−3.96) 0.01 (0.00−0.01) 5.00 (3.00−9.00) 30.38 (19.58−42.22) 0.74 (0.71−0.79) 0.50 (0.23−0.87)
11 −0.20 (−3.16−2.46) 0.19 (−3.74−4.61) 0.01 (0.00−0.01) 6.00 (4.00−10.00) 34.10 (24.02−44.48) 0.75 (0.71−0.79) 0.47 (0.23−0.85)
12 −0.59 (−3.69−1.79) 1.46 (−3.26−5.81) 0.01 (0.00−0.01) 7.00 (5.00−11.00) 35.40 (24.61−45.32) 0.75 (0.71−0.81) 0.48 (0.24−0.85)

Eccentric Gaze Efficiency Variance Eccentric Gaze Eccentric Gaze Smooth Pursuit
Variability Middle Variability Bottom Mean Middle Difference Variance Difference

1 2.65 (2.06−3.75) 19.91 (13.03−32.17) 17.09 (10.85−24.84) 0.65 (0.25−1.23) 3.07 (1.36−5.19) 1.59 (0.59−3.80)
2 2.50 (1.98−3.43) 17.51 (11.42−27.40) 15.55 (9.53−22.75) 0.64 (0.29−1.28) 3.13 (1.45−5.72) 1.34 (0.51−3.34)
3 2.28 (1.84−2.99) 13.21 (9.44−20.69) 14.02 (8.03−20.70) 0.60 (0.27−1.19) 3.15 (1.48−5.81) 1.26 (0.47−3.25)
4 2.06 (1.68−2.56) 9.81 (7.58−14.30) 13.62 (7.75−19.82) 0.53 (0.24−1.02) 3.32 (1.52−6.24) 1.22 (0.46−3.18)
5 2.04 (1.68−2.50) 8.97 (7.24−12.32) 14.30 (8.54−20.62) 0.55 (0.24−1.05) 3.58 (1.67−6.53) 1.30 (0.49−3.32)
6 2.07 (1.70−2.51) 9.13 (7.34−12.88) 14.20 (8.50−20.55) 0.53 (0.25−1.03) 3.55 (1.61−6.39) 1.34 (0.50−3.67)
7 2.08 (1.70−2.59) 9.50 (7.51−13.49) 14.58 (8.96−21.02) 0.51 (0.23−1.00) 3.38 (1.59−6.31) 1.36 (0.50−3.63)
8 2.13 (1.73−2.66) 9.92 (7.77−14.48) 15.02 (9.31−21.41) 0.54 (0.23−1.05) 3.32 (1.54−5.94) 1.55 (0.54−4.27)
9 2.22 (1.80−2.75) 10.20 (7.96−15.37) 14.61 (8.84−21.06) 0.57 (0.26−1.11) 3.23 (1.52−5.66) 1.80 (0.63−5.49)
10 2.24 (1.84−2.77) 10.54 (8.16−15.71) 14.41 (8.83−20.86) 0.57 (0.24−1.09) 3.13 (1.51−5.41) 1.85 (0.64−6.15)
11 2.37 (1.91−2.95) 12.36 (8.70−18.93) 15.26 (9.15−21.36) 0.62 (0.27−1.20) 3.05 (1.41−5.32) 2.28 (0.78−6.74)
12 2.49 (2.11−3.07) 12.74 (9.45−20.07) 16.10 (10.48−23.50) 0.95 (0.41−1.88) 3.06 (1.50−5.61) 2.47 (0.88−6.87)

Table A11. Horizontal saccade median and interquartile range for the 14 contributing eye movement
variables.

Fixation On Band 2 Band 3 Band 3 Missed Missed Under
Number Target Under Over Under Right Side

15.50 (12.00−18.00) 4.00 (2.50−6.00) 0.50 (0.00−1.50) 2.50 (1.50−4.00) 0.00 (0.00−1.00) 2.00 (1.00−3.50) 0.00 (0.00−1.00)
17.50 (14.00−21.00) 4.50 (2.50−6.50) 1.00 (0.50−2.00) 3.00 (2.00−5.00) 0.50 (0.00−1.50) 2.50 (1.00−4.00) 0.00 (0.00−1.00)
20.50 (16.50−24.00) 4.50 (2.50−6.50) 1.50 (0.50−2.50) 4.00 (2.50−6.00) 0.50 (0.00−2.00) 3.00 (1.50−5.00) 0.50 (0.00−1.00)
23.00 (19.00−27.00) 5.00 (3.00−7.50) 1.50 (0.50−3.00) 4.50 (3.00−7.00) 1.00 (0.00−2.50) 3.00 (1.50−6.00) 0.00 (0.00−1.00)
22.50 (18.00−26.00) 5.00 (2.50−7.50) 1.50 (0.50−3.00) 5.00 (3.00−7.00) 0.50 (0.00−2.00) 2.50 (1.00−5.50) 0.00 (0.00−0.50)
21.00 (16.00−25.00) 4.50 (2.50−7.00) 1.00 (0.50−2.50) 4.50 (2.50−6.50) 0.50 (0.00−1.50) 2.50 (1.00−4.50) 0.00 (0.00−0.50)
19.50 (15.00−24.00) 4.50 (2.50−7.00) 1.00 (0.50−2.50) 4.00 (2.00−6.00) 0.50 (0.00−1.50) 2.00 (1.00−4.00) 0.00 (0.00−0.50)
19.00 (14.50−22.50) 4.50 (2.50−7.00) 1.00 (0.50−2.50) 3.50 (2.00−5.50) 0.50 (0.00−1.50) 1.50 (1.00−3.50) 0.00 (0.00−0.50)
18.00 (14.00−22.00) 4.00 (2.50−6.50) 1.00 (0.50−2.50) 3.50 (2.00−5.50) 0.50 (0.00−1.50) 1.50 (1.00−3.50) 0.00 (0.00−0.50)
17.50 (13.50−21.00) 4.00 (2.50−6.50) 1.00 (0.50−2.50) 3.50 (2.00−5.50) 0.50 (0.00−1.50) 1.50 (1.00−3.50) 0.00 (0.00−0.50)
16.00 (13.00−19.00) 4.00 (2.00−6.00) 1.00 (0.00−2.00) 3.00 (1.50−5.50) 0.50 (0.00−1.00) 2.00 (1.00−3.50) 0.00 (0.00−0.50)
16.00 (12.00−19.50) 3.50 (2.00−5.50) 1.00 (0.25−2.00) 3.00 (1.50−5.00) 0.50 (0.00−1.50) 2.00 (1.00−3.50) 0.00 (0.00−0.50)
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Table A11. Cont.

Saccadic Saccadic Saccadic Speed Accuracy Saccadic Saccadic Q Ratio
Efficiency Targeting Velocity Trade Off Recovery Amplitude

5.30 (4.52−6.39) 9.18 (7.49−11.65) 37.89 (31.68−44.54) 4.05 (3.11−5.04) 1.38 (1.17−1.70) 188.64 (173.94−201.16) 2.42 (2.22−2.71)
5.47 (4.62−6.62) 9.48 (7.69−12.04) 42.51 (34.55−50.75) 4.44 (3.38−5.54) 1.41 (1.19−1.69) 193.31 (179.52−204.09) 2.39 (2.19−2.67)
5.66 (4.76−6.88) 10.02 (8.11−12.58) 49.12 (40.43−57.98) 4.90 (3.72−6.18) 1.45 (1.22−1.79) 197.66 (184.57−207.19) 2.36 (2.16−2.61)
5.65 (4.67−6.91) 10.04 (8.18−12.85) 56.14 (46.59−65.26) 5.63 (4.18−7.07) 1.47 (1.23−1.80) 202.84 (192.27−210.54) 2.26 (2.08−2.50)
5.54 (4.57−6.79) 9.84 (7.89−12.62) 54.55 (45.03−63.57) 5.67 (4.06−7.22) 1.44 (1.20−1.75) 205.62 (196.62−212.27) 2.18 (2.04−2.41)
5.42 (4.52−6.69) 9.96 (7.87−13.17) 50.94 (40.86−60.02) 5.14 (3.59−6.79) 1.38 (1.16−1.68) 204.45 (194.69−211.58) 2.18 (2.03−2.40)
5.38 (4.46−6.56) 10.09 (7.95−13.62) 47.97 (38.45−57.01) 4.89 (3.21−6.52) 1.34 (1.13−1.63) 203.53 (193.06−210.17) 2.18 (2.03−2.41)
5.37 (4.45−6.64) 10.13 (7.91−13.79) 45.76 (36.21−54.43) 4.56 (2.99−6.20) 1.33 (1.12−1.60) 201.51 (190.32−208.71) 2.19 (2.03−2.42)
5.49 (4.54−6.81) 10.19 (8.03−13.84) 44.47 (35.56−52.54) 4.41 (2.89−6.00) 1.37 (1.15−1.68) 200.17 (187.80−207.44) 2.22 (2.05−2.45)
5.51 (4.55−6.80) 10.27 (8.16−14.20) 42.99 (34.22−51.08) 4.22 (2.70−5.66) 1.38 (1.16−1.68) 198.08 (183.46−206.75) 2.24 (2.07−2.48)
5.63 (4.68−6.76) 10.41 (8.20−14.81) 40.08 (32.20−46.94) 3.82 (2.39−5.32) 1.43 (1.18−1.76) 195.00 (178.47−205.50) 2.29 (2.10−2.55)
5.65 (4.81−6.91) 11.05 (8.63−15.37) 39.69 (32.17−47.04) 3.60 (2.39−4.84) 1.51 (1.27−1.77) 191.28 (175.47−202.43) 2.29 (2.13−2.57)

Table A12. Vertical saccade median and interquartile range for the 12 contributing eye movement
variables.

Fixation On Band 2 Band 2 Band 3 Missed
Number Target Over Under Under

1 15.00 (12.00−17.50) 3.50 (2.50−5.50) 3.50 (2.00−4.50) 1.00 (0.50−1.50) 0.50 (0.00−1.50) 3.00 (1.62−5.00)
2 17.00 (14.00−20.00) 4.00 (2.50−5.50) 3.50 (2.50−5.00) 1.50 (0.50−2.50) 1.00 (0.00−2.00) 3.50 (2.00−6.00)
3 19.25 (16.00−23.00) 4.50 (3.00−6.00) 4.00 (2.50−5.50) 1.50 (1.00−3.00) 1.00 (0.50−2.50) 4.00 (2.00−6.50)
4 22.00 (19.00−25.00) 5.00 (3.50−7.00) 4.00 (2.50−6.00) 2.00 (1.00−3.50) 1.50 (0.50−3.00) 4.00 (2.00−7.00)
5 22.00 (18.00−25.00) 5.50 (3.50−7.50) 4.00 (2.50−6.00) 2.50 (1.50−4.00) 1.50 (0.50−3.12) 3.00 (1.50−5.00)
6 21.00 (17.00−24.00) 5.50 (3.50−7.50) 4.00 (2.50−5.50) 2.50 (1.00−4.00) 1.50 (0.50−3.00) 2.50 (1.50−4.50)
7 20.00 (16.00−23.00) 5.00 (3.50−7.50) 4.00 (2.00−5.50) 2.50 (1.00−3.50) 1.00 (0.00−3.00) 2.50 (1.00−4.50)
8 19.00 (15.00−22.00) 5.00 (3.00−7.00) 3.50 (2.00−5.50) 2.00 (1.00−3.50) 1.00 (0.00−2.50) 2.00 (1.00−4.50)
9 18.50 (15.00−21.00) 4.50 (3.00−6.50) 3.50 (2.00−5.50) 2.00 (0.50−3.00) 1.00 (0.00−2.50) 2.50 (1.00−4.50)

10 18.00 (14.00−21.00) 4.00 (2.50−6.00) 4.00 (2.50−5.50) 1.50 (0.50−3.00) 1.00 (0.00−2.00) 2.50 (1.00−4.50)
11 17.00 (14.00−20.00) 3.50 (2.00−5.00) 3.50 (2.00−5.00) 1.50 (0.50−2.50) 0.50 (0.00−2.00) 3.00 (1.50−5.00)
12 16.50 (13.00−20.00) 3.00 (1.50−5.00) 3.50 (2.00−5.00) 1.00 (0.50−2.50) 1.00 (0.00−2.00) 3.00 (1.50−5.50)

Saccadic Saccadic Saccadic Saccadic Saccadic Q Ratio
Efficiency Targeting Velocity Variance Amplitude

1 5.75 (4.85−6.99) 11.08 (8.80−14.06) 38.91 (32.47−46.50) 3.83 (3.18−4.72) 177.18 (161.65−190.94) 2.40 (2.23−2.64)
2 6.01 (4.99−7.56) 11.21 (9.01−14.53) 43.75 (35.75−52.49) 3.90 (3.20−4.98) 181.20 (166.56−194.19) 2.40 (2.22−2.64)
3 6.11 (5.07−7.72) 11.25 (9.17−14.25) 49.04 (40.65−57.89) 3.85 (3.18−4.91) 186.52 (172.66−198.28) 2.35 (2.18−2.57)
4 5.98 (4.97−7.37) 10.77 (8.86−13.26) 54.27 (46.23−62.55) 3.68 (3.08−4.54) 194.40 (182.04−203.60) 2.29 (2.12−2.51)
5 5.72 (4.73−7.04) 9.94 (8.29−12.21) 52.85 (44.62−61.38) 3.46 (2.90−4.23) 197.97 (187.34−205.79) 2.29 (2.10−2.52)
6 5.60 (4.67−6.92) 9.94 (8.25−12.26) 50.01 (41.90−58.68) 3.43 (2.86−4.20) 197.35 (186.49−204.78) 2.31 (2.11−2.55)
7 5.55 (4.61−6.87) 9.90 (8.17−12.25) 48.54 (40.01−57.23) 3.37 (2.82−4.11) 196.71 (185.21−205.11) 2.31 (2.11−2.57)
8 5.59 (4.65−6.88) 10.06 (8.16−12.51) 47.04 (38.73−55.83) 3.36 (2.83−4.17) 196.52 (183.89−205.01) 2.33 (2.12−2.58)
9 5.67 (4.68−7.02) 10.14 (8.22−12.76) 46.56 (37.76−55.15) 3.41 (2.84−4.25) 195.54 (181.95−204.49) 2.33 (2.12−2.60)

10 5.86 (4.78−7.31) 10.31 (8.42−13.34) 45.78 (36.64−55.57) 3.50 (2.88−4.44) 194.62 (180.34−204.37) 2.33 (2.12−2.60)
11 6.13 (5.08−7.69) 11.07 (8.98−14.28) 44.06 (35.19−52.47) 3.73 (3.06−4.79) 189.71 (172.11−201.98) 2.36 (2.13−2.63)
12 6.82 (5.41−8.28) 11.87 (9.52−15.18) 44.94 (34.86−53.89) 4.02 (3.32−5.29) 186.31 (164.71−198.72) 2.37 (2.15−2.64)

Table A13. Fixation stability median and interquartile range for the 13 contributing eye movement
variables.

Group Depth Convergence Point Bivariate Contour Gaze Position Gaze Position Gaze Position Gaze Position
Ellipse Analysis 1 (Left) 1 (Right) 3 (Left) 3 (Right)

1 −2.46 (−27.14−23.84) 532.92 (497.97−575.31) 5.88 (5.32−6.51) 63.30 (34.67−79.46) 64.59 (46.33−80.46) 9.48 (2.53−22.07) 8.19 (2.28−20.33)
2 −0.89 (−26.86−26.54) 535.84 (501.58−575.78) 5.48 (4.91−6.20) 66.55 (40.99−84.13) 65.84 (39.93−84.43) 5.13 (0.84−16.50) 5.39 (0.78−16.30)
3 0.35 (−26.60−26.81) 542.62 (506.29−583.75) 5.12 (4.60−5.77) 68.37 (36.39−88.50) 68.85 (38.65−88.40) 2.68 (0.23−12.94) 2.68 (0.27−13.73)
4 −2.43 (−29.59−26.90) 561.46 (524.23−602.94) 4.80 (4.33−5.42) 71.32 (36.68−91.42) 69.87 (33.41−90.87) 1.18 (0.06−8.71) 1.40 (0.11−10.11)
5 −9.16 (−37.34−19.61) 572.25 (534.62−613.11) 4.73 (4.29−5.31) 72.09 (35.07−92.17) 70.35 (33.08−91.53) 1.01 (0.06−8.18) 1.12 (0.06−9.58)
6 −14.47 (−41.46−14.82) 579.24 (539.48−619.12) 4.74 (4.30−5.36) 69.37 (33.73−91.59) 70.79 (35.09−91.74) 1.02 (0.06−9.82) 1.14 (0.06−9.80)
7 −13.89 (−39.90−14.57) 580.67 (542.32−620.18) 4.78 (4.32−5.36) 72.13 (39.19−91.87) 72.32 (37.59−91.97) 1.01 (0.06−7.66) 1.18 (0.11−8.84)
8 −15.31 (−41.21−11.40) 581.11 (543.16−619.54) 4.85 (4.39−5.48) 74.00 (44.48−90.90) 72.71 (40.82−91.45) 1.01 (0.11−7.29) 1.20 (0.11−8.24)
9 −12.85 (−37.57−11.68) 579.51 (540.97−617.26) 4.90 (4.45−5.48) 75.09 (45.13−91.50) 72.29 (41.75−91.04) 1.18 (0.06−7.50) 1.45 (0.11−9.14)

10 −12.10 (−36.38−14.58) 573.18 (538.07−610.91) 4.93 (4.49−5.53) 71.90 (42.21−90.32) 72.34 (43.20−90.24) 1.40 (0.11−8.42) 1.54 (0.11−8.44)
11 −7.53 (−34.24−19.60) 567.55 (531.56−608.90) 5.09 (4.64−5.65) 70.38 (44.96−89.00) 70.53 (42.57−88.24) 1.76 (0.22−8.97) 1.70 (0.22−9.39)
12 −6.56 (−32.08−23.60) 565.35 (528.91−607.56) 5.11 (4.63−5.69) 66.72 (36.36−87.03) 72.43 (44.00−89.12) 2.42 (0.39−9.09) 2.24 (0.34−9.07)
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Table A13. Cont.

Disassociated Tropia Horizontal Targeting Horizontal Targeting Vertical Targeting Vertical Targeting Fixation
Displacement (Left) Displacement (Right) Displacement (Left) Displacement (Right) Dispersion

1 −0.11 (−0.45−0.38) −0.04 (−0.32−0.29) −0.01 (−0.28−0.32) −0.69 (−1.15−−0.19) −0.54 (−1.04−−0.16) 7.00 (5.41−9.06)
2 −0.04 (−0.45−0.36) −0.01 (−0.32−0.32) 0.02 (−0.32−0.34) −0.62 (−1.04−−0.17) −0.58 (−1.04−−0.11) 6.68 (4.91−8.90)
3 −0.06 (−0.48−0.37) 0.01 (−0.32−0.35) −0.01 (−0.35−0.35) −0.59 (−1.08−−0.15) −0.54 (−1.03−−0.06) 6.23 (4.55−8.62)
4 −0.02 (−0.45−0.42) −0.03 (−0.37−0.33) 0.02 (−0.34−0.38) −0.56 (−1.02−−0.10) −0.54 (−1.04−−0.07) 6.08 (4.37−8.51)
5 −0.03 (−0.45−0.42) −0.08 (−0.42−0.27) 0.09 (−0.26−0.45) −0.55 (−1.05−−0.08) −0.52 (−1.04−−0.06) 6.02 (4.30−8.37)
6 −0.04 (−0.48−0.41) −0.12 (−0.49−0.24) 0.15 (−0.21−0.49) −0.54 (−1.02−−0.12) −0.53 (−1.01−−0.09) 5.96 (4.26−8.37)
7 0.00 (−0.43−0.42) −0.12 (−0.47−0.23) 0.14 (−0.21−0.48) −0.50 (−0.96−−0.06) −0.49 (−0.97−−0.04) 5.89 (4.26−8.28)
8 0.00 (−0.40−0.41) −0.15 (−0.47−0.21) 0.15 (−0.19−0.50) −0.43 (−0.88−0.03) −0.42 (−0.89−0.03) 5.88 (4.23−8.04)
9 0.00 (−0.43−0.42) −0.10 (−0.43−0.23) 0.12 (−0.21−0.47) −0.39 (−0.84−0.08) −0.38 (−0.87−0.10) 5.86 (4.28−8.11)

10 0.01 (−0.42−0.40) −0.10 (−0.47−0.22) 0.09 (−0.24−0.44) −0.38 (−0.87−0.10) −0.38 (−0.85−0.10) 5.84 (4.36−7.96)
11 −0.01 (−0.44−0.45) −0.09 (−0.42−0.25) 0.06 (−0.30−0.44) −0.29 (−0.76−0.21) −0.30 (−0.77−0.22) 6.03 (4.52−8.07)
12 −0.05 (−0.45−0.45) −0.08 (−0.40−0.30) 0.02 (−0.34−0.40) −0.28 (−0.74−0.30) −0.22 (−0.74−0.30) 5.78 (4.53−7.93)

Table A14. Calibration median and interquartile range for the 13 contributing eye movement
variables.

Pupil Diameter Mean Pupil Diameter Difference

1 3.72 (3.34−4.07) 0.11 (0.05−0.21)
2 3.79 (3.43−4.19) 0.11 (0.05−0.20)
3 3.84 (3.45−4.25) 0.12 (0.06−0.21)
4 3.77 (3.36−4.19) 0.12 (0.06−0.21)
5 3.52 (3.15−3.94) 0.12 (0.05−0.21)
6 3.38 (3.02−3.76) 0.11 (0.05−0.20)
7 3.21 (2.87−3.59) 0.11 (0.05−0.20)
8 3.04 (2.74−3.39) 0.11 (0.05−0.19)
9 2.96 (2.64−3.30) 0.11 (0.05−0.20)

10 2.88 (2.57−3.22) 0.10 (0.05−0.19)
11 2.81 (2.48−3.13) 0.12 (0.06−0.21)
12 2.61 (2.38−3.00) 0.09 (0.04−0.18)
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