EYES ON THE PRIZE: LINKING OCULOMOTOR BEHAVIOR TO MATCH PERFORMANCE IN COLLEGIATE WOMEN'S SOCCER ATHLETES

Taylor Kinney¹, Courtney Smith¹, Melissa Hunfalvay², Nicholas P. Murray¹, Patrick Rider¹

¹Department of Kinesiology, East Carolina University, Greenville, NC; ²Research Division, RightEye, LLC, Bethesda, MD

BACKGROUND

Enhanced visual function facilitates athletic performance^{1,2}

<u>Higher-Level Athletes</u>

- Fixations primarily toward task-relevant areas
- Perform fewer fixations of longer duration
- Use visual pivots or gaze anchors
- Prolonged Quiet Eye (QE)
- Enhanced visual information processing (anticipation, decision-making, reaction time)

Less-Skilled Athletes

- More fixations toward task-redundant areas
 - Perform more fixations of shorter duration
 - Erratic scanning behavior
 - Later QE onset
 - Slower & less accurate
 - visual information processing

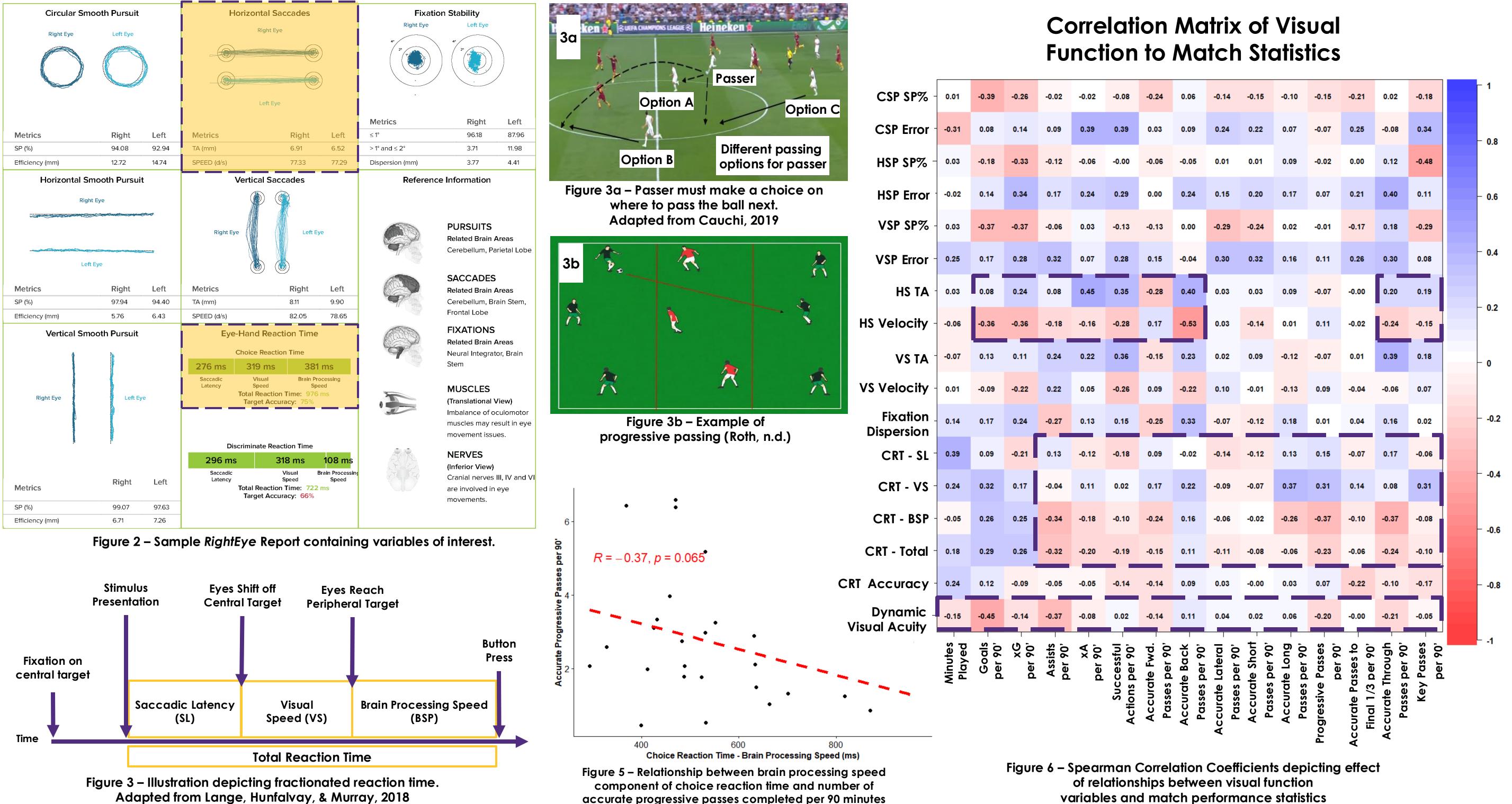
Previous research has shown enhanced oculomotor, perceptual, and visualmotor function correlates with greater performance statistics^{3,4}

This exploratory analysis investigated relationships between oculomotor, perceptual, and visual-

motor functioning with match performance statistics of women's soccer athletes

METHODOLOGY

Figure 1 – Example scan paths of higher-level (orange) & less-skilled (blue)


soccer athletes preparing to take a free kick. (Fractal Media, 2018)

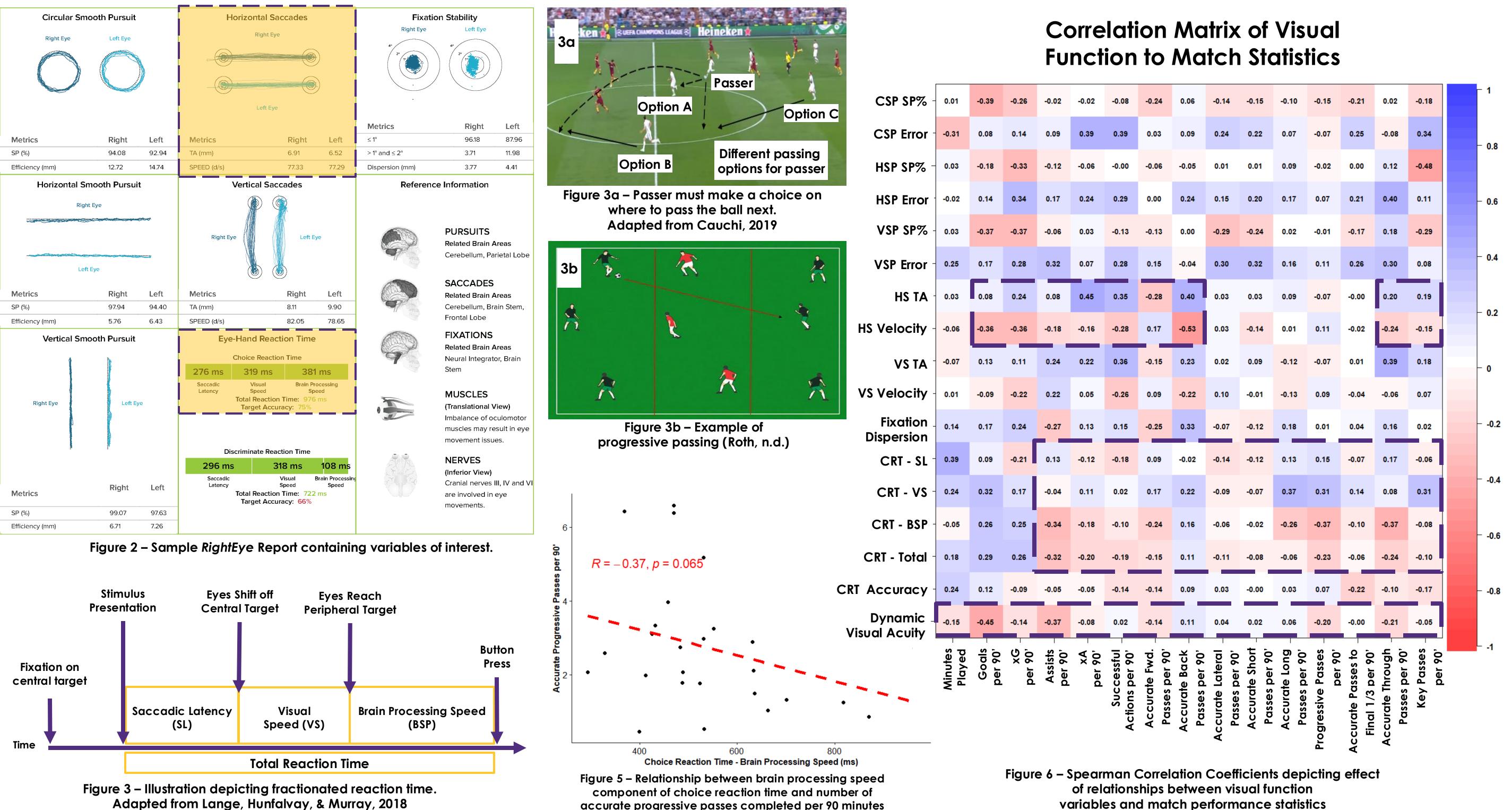


Figure 2 – RightEye Vision System

Participants: 25 NCAA Division 1 Women's Soccer Athletes with no history of traumatic brain injury (TBI) **Task:** RightEye Sports Vision EyeQ Assessment **Measures:** 22 measures of oculomotor, perceptual, and visual-motor function; 68 different match performance statistics scraped from WyScout over previous 2 seasons **Statistical Analyses:** Spearman Rank Correlation Tests (w/ Bonferroni corrections) conducted between RightEye measurements & match performance statistics

RESULTS

CSP SP% -	0.01	-0.39	-0.26	-0.02	-0.02	-0.08	-0.24	0.06	-0.14	-0.15	-0.10	-0.15	-0.21	0.02	-0.18	- 1
CSP Error	-0.31	0.08	0.14	0.09	0.39	0.39	0.03	0.09	0.24	0.22	0.07	-0.07	0.25	-0.08	0.34	- 0.8
HSP SP% -	0.03	-0.18	-0.33	-0.12	-0.06	-0.00	-0.06	-0.05	0.01	0.01	0.09	-0.02	0.00	0.12	-0.48	
HSP Error	-0.02	0.14	0.34	0.17	0.24	0.29	0.00	0.24	0.15	0.20	0.17	0.07	0.21	0.40	0.11	- 0.6
VSP SP% -	0.03	-0.37	-0.37	-0.06	0.03	-0.13	-0.13	0.00	-0.29	-0.24	0.02	-0.01	-0.17	0.18	-0.29	
VSP Error -	0.25	0.17	0.28	0.32	0.07	0.28	0.15	-0.04	0.30	0.32	0.16	0.11	0.26	0.30	0.08	- 0.4
HS TA	0.03	0.08	0.24	0.08	0.45	0.35	-0.28	0.40	0.03	0.03	0.09	-0.07	-0.00	0.20	0.19	
HS Velocity -	-0.06	-0.36	-0.36	-0.18	-0.16	-0.28	0.17	-0.53	0.03	-0.14	0.01	0.11	-0.02	-0.24	-0.15	- 0.2
VS TA	-0.07	0.13	0.11	0.24	0.22	0.36	-0.15	0.23	0.02	0.09	-0.12	-0.07	0.01	0.39	0.18	- 0
VS Velocity -	0.01	-0.09	-0.22	0.22	0.05	-0.26	0.09	-0.22	0.10	-0.01	-0.13	0.09	-0.04	-0.06	0.07	

DISCUSSION

APPLICATIONS

- Saccadic Latency & Brain Processing Speed components of RT inversely related with passing success, but not Visual Speed
- Neither Smooth Pursuit nor Fixations show clear relationships to passing performance
- By uncovering relationships between basic visual function and women's soccer performance, we can:
 - compare these results to sport-specific measures of visual function
 - identify conditions/scenarios under which

CONCLUSION

Our results suggest that enhanced saccadic ability, along with efficient visual-motor processing, correlates to improved passing ability in soccer

Soccer athletes must rapidly shift their

Saccadic Speed-Accuracy Trade-off⁴

 Dynamic Visual Acuity, a metric to further investigate

visual advantages exist for athletes

 investigate the effects of TBI on the visual functioning of soccer athletes

attention in an optimal & efficient manner to facilitate perception of relevant information

<u>References</u>

- Mann, D. Y., Williams, A. M., Ward, P. & Janelle, C. M. Perceptual-cognitive expertise in sport: A meta-analysis. J Sport Exerc Psychol 29, 457–478 (2007).
- Lochhead, L., Feng, J., Laby, D. M. & Appelbaum, L. G. Visual Performance and Sports: A Scoping Review. J Sport Exerc Psychol 46, 205–217 (2024).
- Liu, S., Edmunds, F., Burris, K., & Appelbaum, L.G. (2020). Visual and oculomotor abilities predict professional baseball batting performance. International Journal of Performance Analysis in Sport, 20(4), 683–700.
- Murray, N. P., Lawton, J., Rider, P., Harris, N., & Hunfalvay, M. (2021). Oculomotor behavior predict professional cricket batting and bowling performance. Frontiers in Human Neuroscience, 15, 768585.

